	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 1 / 36

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

18CHEL26 : ENGINEERING CHEMISTRY LAB 2
A. LABORATORY INFORMATION 2

1. Lab Overview 2
2. Lab Content 2
3. Lab Material 4
Textbook of Engineering Chemistry with Lab Manual 9th Edition (English, Paperback, Shashi Chawla) 4
Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition byA.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford(Author), P.W.G. Smith (Author)4
4. Lab Prerequisites 4
5. General Instructions 4
6. Lab Specific Instructions 5
B. OBE PARAMETERS 5
7. Lab / Course Outcomes 5
8. Lab Applications 6
Application of potentiometry to characterize acid and basic sites in humic substances Testing 6
The Techniques to study complexation reactions at the mineral/water 6
Interface No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution 6
9. Articulation Matrix 7
10. Curricular Gap and Content 7
11. Content Beyond Syllabus 8
c. COURSE ASSESSMENT 8
12. Course Coverage 8
13. Continuous InternalAssessment (CIA) 9
D. EXPERIMENTS 9
Experiment 01 : Potentiometric estimation of FAS using standard K2Cr2O7 solution 9
Application of potentiometry to characterize acid and basic sites in humid substances Testing 11
The Techniques to study complexation reactions at the mineral/water 11
Interface No indicator is used; instead the potential is measured across theanalyte, typically an electrolyte solution11
Experiment 02 : Conductometric estimation of acid mixture 12
Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid 14
Experiment 04 : Keywords and identifiers 16
Experiment 05 : Determination of pKa of the given sample using pH meter 18
Experiment 06 : Flame photometric estimation of sodium and potassium 20
PART - B 23
Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard 23
Na2EDTA solution 23
OBSERVATION AND CALCULATION: 25
Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION 26
Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS 28
Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION 30
Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER 32
Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching 35 powder 35

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 2 / 36

Copyright ©2017. cAAS. All rights reserved.

Note : Remove "Table of Content" before including in CP Book

18CHEL26 : ENGINEERING CHEMISTRY LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	BS
Year / Semester:	$2019 / 1$	Academic Year:	2019-20
Course Title:	Engineering Chemistry Lab	Course Code:	18CHEL26
Credit / L-T-P:	$1 / 0-0-2$	SEE Duration:	180 Minutes
Total Contact Hours:42 Hrs	SEE Marks:	60 Marks	
CIA Marks:	40	Test	2
Course Plan Author:	Dr. Manju M	Sign	Dt : 04-01-2019
Checked By:	Dr. Shankara B.S	Sign	Dt : 14-08-2019

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
	PART- A			
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	2	Redox Reaction s	L4 Analyzing \& L5 Evaluation
2	Conductometric estimation of acid mixture.	2	Acid Base Reaction	L4 Analyzing \& L5 Evaluation
3	Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.	2	Cohesive Force	L4 Analyzing \& L5 Evaluation
4	Colorimetric estimation of Copper.	2	Measurem ent of Optical Density	L4 Analyzing \& L5 Evaluation
5	Determination of pKa of the given weak acid using pH meter.	2	PH measure ment	L4 Analyzing \& L5 Evaluation
6	Flame photometric estimation of sodium and potassium.	2	Atomizati on	L4 Analyzing \& L5 Evaluation
	PART- B			
1	Estimation of Total hardness of water by EDTA method.	2	Complexo metric titration	L4

		SKIT	Teaching Process			Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1.F03			Date: 28-01-2020
		Title:	Engineering Chemistry Lab			Page: 3 / 36
Copyright ©2017. cAAS. All rights reserved.						
						L5 Evaluation
2	Estim	ion of CaO	cement solution by rapid EDTA method.	2	Complexo metric titration	L4 Analyzing \& L5 Evaluation
	Det sodi	mination of thiosulph	percentage of Copper in brass using standard e solution.	2	Iodometri c titration	L4 Analyzing \& L5 Evaluation
4	Dete	ination of	OD of waste water.	2	Redox titration	L4 Analyzing \& L5 Evaluation
5	Esti Cr 2 indi	tion of Iron 7 solution by or method.	h haematite ore solution using standard K 2 external	2	Redox titration	L4 Analyzing \& L5 Evaluatio
6	Estim sam	tion of perc of bleachin	ntage of available chlorine in the given powder	2	Iodometri c titration	L4 Analyzing \& L5 Evaluation

3. Lab Material

Unit	Details	Available
1	Text books	
i	Textbook of Engineering Chemistry with Lab Manual 9th Edition (English, Paperback, Shashi Chawla)	In Lib
ii	Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by A.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford (Author), P.W.G. Smith (Author)	In Lib
2	Reference books	
i	G.H.Jeffery, J.Bassett, J.Mendham, R.C.Denney, "Vogel's Tex book of quantitative Chemical Analysis Fifth Edition(New),	In Lib
ii	O.P.Vermani \& Narula, "Theory and Practice in Applied Chemistry", New Age International Publisers.	In Lib
iii	Gary D. Christian, "Analytical chemistry ", $6^{\text {th }}$ Edition, Wiley India.	In Lib
ii	Engineering Chemistry Lab manual	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
i	https://sites.google.com/...chemistry-laboratory-w.	Available on web
ii	https://science.nrao.edu > Facilities > CDL	Available on web
iii	https://www.acs.org/.../chemistryclubs/.../simulati..	Available on web
iv	https://www.augusta.edu/.../chemistryandphysics/	Available on web
v	www.ncl-india.org/	Available on web

4. Lab Prerequisites:

-	-	Base Course:		-	-		
SNo	Course Code	Course Name	Topic / Description	Sem	Remarks		
1	18CHEL26	Enginering Chemistry Lab	Titrations/students have done these kind of experiments in lower standards.	1			
BSH Prepared by							Approved
:---							

	SKIT	Teaching Process		Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03		Date: 28-01-2020
	Title:	Engineering Chemistry Lab		Page: 4 / 36
Copyright O2017. cAAS. All rights reserved.				
		Instrumental analysis/students have studied in theory part regarding these experiments.	1	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
5. General Instructions

SNo	Instructions	Remarks
1	Never work in the laboratory unless a demonstrator or teaching assistant is present.	
2	Do not throw waste such as match stems filter papers etc. into the sink. They must be thrown into the waste jars.	
3	Keep the water and gas taps closed expect when these utilities are needed.	
4	Never taste any chemical unless instructed to do so and don't allow chemicals to come in contact with your skin.	
5	While working with gases, conduct the experiment in a fume hood.	
6	Keep all the doors and windows open while working in the laboratory.	
7	You should know about the hazards and properties of every chemical which you are going to use for the experiment. Many chemicals encountered in analysis are poisonous and must be carefully handled.	
$\mathbf{8}$	Sulphuric acid must be diluted only when it is cold .This should be done by adding it slowly to cold water with stirring ,and not vice versa.	
9	Reagent bottles must never be allowed to accumulate on the work bench. They should be placed back in the shelves as and when used.	
10	Containers in which reaction to be performed a little later should be labeled. Working space should be cleaned immediately.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
	Chemical Splash Goggles:	
1	Purchase a pair of chemical safety goggles).	
2	Bring your goggles with you for all laboratory sessions of your chemistry class. You will not be allowed to work in the lab without your goggles	
3	Wear your goggles when anyone in the lab is conducting an experiment.	
	Laboratory Coats:	Purchase a lab coat that fits you well. Lab coats that are too tight or too loose are not safe. Sleeves that are too long should be rolled up.
5	If your lab coat has not been contaminated with a hazardous substance, you may wash it as you do your other clothing.	
6	If your lab coat becomes contaminated with a hazardous substance, as with any other lab spill, notify your instructor immediately.	
7	Contaminated lab coats will be handled by your instructor as they deem appropriate.	
8	Nitrile Gloves: Nitrile gloves are to be worn only during portions of experiments where specified by the experimental procedure, when instructed by the instructor or supervisor, or when working with substances for which the protocol requires the use of gloves.	
9	Note that nitrile gloves are flammable and will stick to your skin if they burn. Do not wear gloves while working with Bunsen burners. Do not wear gloves outside the lab. When a chemical comes in contact with a glove, remove the glove immediately and place it in the glove waste.	
11	Do not touch surfaces such as door knobs, computer keyboards, and chairs while wearing Pag gloves.	

B. OBE PARAMETERS

1. Lab / CourseOutcomes

\#	COs	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms' Level
PART- A						
1	Handling different types of instruments for quantitative analysis of samples.	21	Instrumental method of analysis	Demons trate	Test	L3
PART- B						
2	Volumetric analysis of various samples quantitatively.	21	Volumetric analysis	Demons trate	Test	L3
-	Total	42	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
PART- A			
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	C01	$\begin{gathered} \mathrm{L} 3 \\ \text { \& } \\ \text { L4 } \end{gathered}$
2	Conductometric estimation of acid mixture.	C01	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
3	Determination of percentage of Copper in brass using standard sodium thiosulphate solution.	CO2	$\begin{gathered} \mathrm{L} 3 \\ \text { \& } \\ \text { L4 } \end{gathered}$
4	Determination of COD of waste water.	CO2	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$

Note: Write 1 or 2 applications per CO.
3. Mapping And Justification
4. Articulation Matrix
(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	COs	P01	PO2	PO3	PO4	P05	PO6	PO7	P08	P09	P010	P011	P012	Level
18CHE271.	Estimate amount of FASpotentio metrically through redox titrations.	x	x	x										
18CHE27.2	Calculate amount of acid mixture conducto metrically through neutralization titration.	x	x	x										
18CHE27.3	Compute amount of copper bu measuring absorbence using optical method	x	x	x										
18CHE27.4	Determine Pka Value of given sample using Ph meter.	x	x	x										
18CHE27.5	Estimation of co-efficient of viscosity of given organic liquid using ostwald's method.	x	x	x										

5. Curricular Gap andContent

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Note: Anything not covered above is included here.
c. COURSE ASSESSMENT

1. Course Coverage

nit	Title	Teachi	No. of question in Exam	CO	Levels

		SKIT	Teaching Process								Rev No.: 1.0		
		Doc Code	BS-SKIT.Ph5b1.F03								Date: 28-01-2020		
		Title:	Engineering Chemistry Lab								Page: 7 / 36		
Copyright ©2017. cAAS. All rights reserved.													
				ng Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
PART-A													
1	Poten using solut	ometric es andard K	mation of FAS Cr 207	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \mathrm{L} 3 \\ \mathrm{C} \\ \mathrm{~L} 4 \end{gathered}$
2	Condu mixtu	ometric estir	mation of acid	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
3	Deter effici Ostw	nation o t of the giv d's viscome	Viscosity coliquid using	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
4	Color	etric estim	ion of Copper.	02	1	-	-	-	-	-	1	C01	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
5	Deter weak	nation of cid using	a of the given meter.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
6	Flame sodiu	hotometric and potass	stimation of m.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \\ \hline \end{gathered}$

PART- B

1	Estimation of Total hardness of water by EDTA method.	02	-	1	-	-	-	-	1	CO2	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
2	Estimation of CaO in cement solution by rapid EDTA method.	02	-	1	-	-	-	-	1	CO2	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
3	Determination of percentage of Copper in brass using standard sodium thiosulphate solution.	02	-	1	-	-	-	-	1	CO2	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
4	Determination of COD of waste water.	02	-	1	-	-	-	-	1	CO2	$\begin{gathered} \mathrm{L} 3 \\ \mathrm{C} \\ \mathrm{~L} 4 \end{gathered}$
5	Estimation of Iron in haematite ore solution using standard K 2 Cr 2 O 7 solution by external indicator method.	02	-	1	-	-	-	-	1	CO2	L3 \& L4
6	Estimation of percentage of available chlorine in the given sample of bleaching powder	02	-	1	-	-	-	-	1	CO2	L3 ¢ L4
-	Total	42	7	8	5	5	5	5	20	-	-

Note: Write CO based on the theory course.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam-1	10	C01,	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
CIA Exam - 2	10	CO2,	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
CIA Exam - 3	10	C01 \& CO2,	$\begin{gathered} \text { L3 } \\ \text { \& } \\ \text { L4 } \end{gathered}$
Other Activities - defineSlip test			L2, L3, L4

BSH

PART - A

D. EXPERIMENTS

Experiment 01 : Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.

	Experiment No.:		Marks	Date Planned	Date Conducted	
1	Title	Potentiometric estimation of FAS using standard K 2 Cr 207 solution.				
2	Course Outcomes	Estimation of amount of FASPotentiometrically through redox reaction				
3	Aim					
4	Material/ Equipment Required	> Digital Potentio meter > Calomel \& Pt-electrodes > 10 ml Burette > 100 ml beaker > Glass rod.				
5	Theory, \quad Formula, Principle,	$E=E^{o}+\frac{0.0591}{n} \log \frac{[\text { Oxidizedform }]}{[\text { Reducedform }]}$ Where, E° is the standard potential of the system, and $[\mathrm{X}]$ represent the molar concentration x . Suppose that, in beaker we have acidified Fe^{2+} solution, and we add slowly $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ from a burette, then following reaction takes place. $6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7_{2} \cdot} 6 \mathrm{Fe}_{3}+2 \mathrm{Cr}_{3+}$ Before the equivalence point, the potential is determined by the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ system. $E=E^{o}+\frac{0.0591}{n} \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}=0.75 V+0.0591 \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}$ The potential of the solution will be around 0.75 V (since the contribution from the second term is negligible). After the equivalence point, the potential is determined by the $\mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{C}^{2} \mathrm{r}$ system.				

Experiment 02 : Conductometric estimation of acid mixture

	SKIT	Teaching Process	Rev No.: 1.0
	(BS-SKIT.Ph5b1.F03	Date: 28-01-2
	(8) Title:	Engineering Chemistry Lab	Page: 11 / 36
Copyright @2017. cAAS. All rights reserved.			
6		Fill a micro burette with the standard NaOH solution. Pipette out $50 \mathrm{~cm}^{3}$ of the given acid mixture into a clean $100 \mathrm{~cm}^{3}$ beaker. Place the conductivity cell in the beaker so that the conductivity cell is completely immersed in the acid mixture Add $0.5 \mathrm{~cm}^{3} \mathrm{NaOH}$ solution from the burette. Stir the solution gently and record the conductance. Continue the measurement of conductance after each addition of $0.5 \mathrm{~cm}^{3}$ of NaOH till $10 \mathrm{~cm}^{3}$. Plot a graph of conductance on Y - axis versus volume of NaOH on X -axis. The conductance titration curve is marked by two breaks; the first one corresponds to the equivalence point of $\mathrm{HCl}\left(\mathrm{V}_{1} \mathrm{~cm}^{3}\right.$ and the second to that of $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{V}_{2} \mathrm{~cm}^{3}\right)$. From the graph, find the neutralization points and the volume of NaOH required to neutralize the acids	
7	Reaction Equation		
8	Observation Table, Look-up Table, Output $\|$	Vol. of \quad Conductance (mS)	Conductance (mS)
		0.0	
		0.5	
		1.0	
		1.5	
		2.0	
		2.5	
		3.0	
		3.5	
		4.0	
		4.5	
		5.0	
9	Sample Calculations	Normality of $\mathrm{NaOH}=$ \qquad Volume of NaOH required Volume of NaOH required $\begin{aligned} & N_{\mathrm{HCl}}=\frac{[N \times V]_{\mathrm{NaOH}}}{50}=\frac{\ldots . .}{50} \\ & \mathrm{NCH}_{3} \mathrm{COOH}=\frac{\left[N \times\left(V_{2}-1\right.\right.}{50} \end{aligned}$ Therefore, weight of $\mathrm{HCl} / \mathrm{dm}^{3}=\mathrm{N}$ weight of $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{dm}$	$\left.V_{2}-V_{1}^{3}\right) \mathrm{cm}$ \qquad (b) $\begin{aligned} & 5 \quad=\ldots \ldots \\ & \mathrm{H}_{3} \mathrm{COOH}= \\ & \text { ' } b \text { ' } \end{aligned}$

Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid

Experiment 04 : Keywords and identifiers

Experiment 05 : Determination of pKa of the given sample using pH meter.

	SKIT	Teaching Process				Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03				Date: 28-01-2020
	(1) Title:	Engineering Chemistry Lab				Page: 17 / 36
Copyright ©2017. cAAS. All rights reserved.						
		continuously changes. When we plot a graph of pH vs. volume of NaOH , we get a 'S' shaped curve. We find that there will be sharp jump in pH at the equivalence point. At half equivalence point, [Salt] = [Acid]. Thus, according to the Henderson equation pH becomes equal to pKa at half equivalence point. PROCEDURE: Pipette out $25 \mathrm{~cm}^{3}$ of the given weak acid into a $100 \mathrm{~cm}^{3}$ beaker. Immerse the combined glass electrode into the acid. Connect the electrode terminals to a pH meter. Measure the pH of the acid. Add NaOH solution from a micro burette in increments of $0.5 \mathrm{~cm}^{3}$. After each addition, stir the solution and measure the pH . (After the jump in the pH , take six more readings). Plot a graph of $\Delta \mathrm{pH} / \Delta \mathrm{V}$ against volume of NaOH and determine the equivalence point. Plot another graph pH / volume of NaOH , and note the pH at half equivalence point (Which is nothing but pKa).				
6	Procedure	Transfer $25.0 \mathrm{~cm}^{3}$ of the given weak acid (acetic acid) into a beaker using a pipette. Immerse a glass electrode - calomel electrode assembly into the acid and connect the cell to a pH meter. Measure the pH of the acid. Fill a micro burette with the base (sodium hydroxide). Now add NaOH in the increments of $0.5 \mathrm{~cm}^{3}$, stir the solution carefully, and measure the pH after 10 seconds. Continue the procedure till the pH shows a tendency to increase rapidly. Take few more readings after that. Tabulate the readings. Plot a graph of ${ }^{*} \mathrm{pH} / \mathrm{w}_{\mathrm{w}} \mathrm{V}$ against V and determine the equivalence point V_{e}. Plot a graph of pH (ordinate) against the volume of sodium hydroxide added (abscissa). Determine the pH at half equivalence point. This gives the pk_{a} of the acid.				
7	Model Diagram					
8	Observation Table, Look-up Table, Output	Volume of NaOH added (in cm^{3})	P^{+}	ΔV	$\Delta \mathrm{P}^{+}$	$\frac{\Delta P^{H}}{\Delta V}$
		0.0				
		0.5				
		1.0				
		1.5				
		2.0				
		2.5				
		3.0				
		3.5				
		4.0				
		4.5				
		5.0				
9	Sample Calculations	$\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { Salt }]}{[\text { Acid }]},[\text { Salt }]=[\text { Acid }], \mathrm{pH}=\mathrm{pKa}$				

Experiment 06 : Flame photometric estimation of sodium and potassium.

-	Experiment No.:	6	Marks	Date Planned	Date Conducted	
1	Title	Flame photometric estimation of sodium and potassium.				
2	Course Outcomes	Estimation of amount of given sample using Flame photometric.				
3	Aim	Flame photometric estimation of sodium and potassium.				
4	Material Equipment Required	- Flame photometer FLAPHO or Eppendorf. - Stock solutions of Na^{+}and $\mathrm{K}^{+}, \mathrm{c}=1 \mathrm{mg} / \mathrm{ml}$. - 6 numbered 100 ml volumetric flasks. - Glass pipettes: $1,2,10 \mathrm{ml}$. - 50 ml Burette - 100 ml beaker				
5	Theory		aspirate d. ectrons f d from gro king use electrons $n=2,3,4$ are the c (s) -Na	vapour, atoms are o higher e y of flame e ground each elem Na^{*} $\uparrow \downarrow h \gamma$ (emi ociation Energy K^{*}	Flame is $\quad a$ emissio used detection If a contain metallic ato) where $n=2$ energy state ng radiation (g)	photometry atomic technique for the n of metals. solution ing metallic ms, will be $, 3,4, \ldots .7$ S, (En-E1 $=h \gamma$

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
		Title:	Engineering Chemistry Lab	Page: 19 / 36
Copyright ©2017. cAAS. All rights reserved.				

	SKIT	Teaching Process				Rev No.: 1.0	
	(\%) Doc Code:	BS-SKIT.Ph5b1.F03				Date: 28-01-2020	
	(${ }^{\text {a }}$	Engineering Chemistry Lab				Page: 20 / 36	
Copyright O2017. cAAS. All rights reserved.							
		calibration curve by plotting the reading (y-axis) and volume of NaCl solution (x axis). From the calibration curve, find out the volume of the given test solution and from which calculate the amount of $\mathrm{Na}(58.5 \mathrm{~g}$ of NaCl contains 23 g of Na). Determination of Potassium: Prepare standard solution of potassium and follow the same procedure given above for sodium. 1. Let the instrument warm up for 5-10 minutes. 2. Feed distilled water to the instrument. 3. Select the element Na by turning the selector "Elementwahl". 4. Turn the outer knob "Messbereich" into position " 10 0". Pull the "Kompensaton I" knob slightly out and adjust readout to 0 . Press the "Kompensation I" knob back. Readjust 0 reading with "Kompensation II" if necessary. 5. Aspirate the most concentrated standard solution (solution number 6) and adjust readout to approximately 350 (on uppermost scale) using inner "Messbereich" knob. 6. Aspirate distilled water - the instrument should read 0. 7. Aspirate standard solutions no. 1, 2, 3, test solution, and then standards 4, 5, 6. Record the results. 8. Repeat 3-7 for solutions of potassium. 9. Aspirate distilled water for at least 5 minutes to clean the system.					
7	Model Diagram						plifier and cadout
8	Observation Look-up Table, Output Table,						
		Volume of sodium chloride solution (cm^{3})	Concentrati on of $\mathrm{Na}=$ $500 \times$ vol 50 (ppm)	Emission Intensity	Volume of potassium chloride solution $\left(\mathrm{cm}^{3}\right)$	Concentr ation of K $=500 x$ vol 50 (ppm)	Emission Intensity

		SKIT	Teaching Process			Rev No.: 1.0	
		Doc Code	BS-SKIT.Ph5b1.F03			Date: 28-01-2020	
		Title:	Engineering Chemistry Lab			Page: 21 / 36	
Copyright ©2017. cAAS. All rights reserved.							
			2.0	20	2.0	20	
			4.0	40	4.0	40	
			6.0	60	6.0	60	
			8.0	80	8.0	80	
			10.0	100	10.0	100	
			Test solution		Test solution		
9	Sample Calculations		Weight of Sodium per ml of the solution $=1 \mathrm{mg}$ 1 ml of NaCl solution contains 0.002542 g of NaCl 58.5 g of NaCl contains 23 g of Na $\begin{aligned} & 23 \\ 0.002542 \mathrm{~g} \text { of } \mathrm{NaCl} \text { contains } & =\ldots \ldots \times 0.002542 \\ & 58.5 \\ & =1 \mathrm{mg} \end{aligned}$ Therefore 1 ml of NaCl solution contains 1 mg of Na 1 ml of NaCl solution contains 0.002542 g of NaCl Therefore Xml of NaCl solution contains $=$ $\mathrm{X} \times 0.002542 \mathrm{~g}$ of $\mathrm{NaCl}=\cdots--\times 0.002542 \mathrm{~g}$ of NaCl $\text { = ------------------------- of } \mathrm{NaCl}(\mathrm{Y})$ Therefore the amount of Na present in above test solution \qquad (Xml) can be calculated by knowing the equivalent weight of Na and molecular weight of NaCl . Therefore, Y g of NaCl contains ```23 = -----xY =-----g= ------- mg 58.5``` DETERMINATION OF POTASSIUM: Weight of potassium per ml of the solution $=1 \mathrm{mg}$ 1 ml of Kcl solution contains $(0.001909 \mathrm{~g}$ of KCl 74.5 g of KCl contains 39 g of K ```39 = ------ ×0.001909 =1 mg 74.5``` Therefore, 1 ml of KCl solution contains 1 mg of K 1 ml of KCl solution contains 0.001909 g of KCl Therefore, X ml of KCl solution contains $=\mathrm{X} \times 0.001909 \mathrm{~g}$ of KCl Therefore, the amount of K present in above test solution (X ml) can be calculated by knowing the equivalent weight of K and molecular weight of KCl 39 Therefore, Y g of KCl contains $=------\times \mathrm{Y}=-\cdots---\mathrm{g}$ 74.5 = ----mg				
10	Grap		Calibration curve				

PART - B

Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard Na2EDTA solution.

Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION.

Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS

-	Experiment No.:	3	Marks		Date		Date	

Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION

| - | Experiment No.: | 4 | Marks | Date
 Planned | Date
 Conducted |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Title | DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE | | | |

$*$	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 31/36

Copyright ©2017. cAAS. All rights reserved.

Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER

			SKIT	Teaching Process				Rev No.: 1.0	
		Doc Code:		BS-SKIT.Ph5b1.F03				Date: 28-01-2020	
		Title:		Engineering Chemistry Lab				Page: 32 / 36	
Copyright O2017. cAAS. All rights reserved.									
				Pipette out $25 \mathrm{~cm}^{3}$ of potassium dichromate into a conical flask-using pipette. Add $10 \mathrm{~cm}^{3}$ of $1: 1$ sulphuric acid containing mercuric sulphate and silver sulphate and 3 drops ferroin indicator. Titrate against FAS taken in the burette until the colour changes from blue green to reddish brown. Note the burette reading and repeat the titration to get concordant values. Part-C: Back titration: Pipette out $25 \mathrm{~cm}^{3}$ of given sample of wastewater into a conical flask. Add $25 \mathrm{~cm}^{3}$ of standard potassium dichromate solution using a pipette. Add 10 cm 3 of $1: 1$ sulphuric acid containing mercuric sulphate and silver sulphate while shaking the flask constantly. Reflux the content of flask for 30 minutes. Cool to room temperature. Add 3-4 drops ferroin indicator and Titrate against FAS solution taken in the burette until the colour changes from bluish green to reddish brown. Note down the burette reading and repeat the titration to get concordant values.					
7 Reaction Equation									
8	Observation Table, Look-up Table, Output			Burette readings	Trail I	Trail II	Trail III		Indicator and colour change
				Final burette reading					Ferroin
				Initial burette reading					Blue green to
				Volume of FAS run down (in cm^{3})					brown
9	Sample Calculations			OBSERVATION AND CALCULATION: PART A: Preparation of Ferrous ammonium sulphate (FAS) solution:					
				Weight of the weighing bottle + FAS = g					
				Weight of the weighing bottle					
				Weight of the FAS salt transferred $=$ g					
				Normality $\frac{\text { Wt. of FAS X4 } 4}{\text { Gram eq. Wt. of FAS }}=\frac{X 4}{392}=\ldots N(a)$Volume of FAS consumed in the blank titration $=\ldots \ldots .$. (b) cm^{3} Part-B: Back titration:					
				Burette readings	Trail I	Trail II	Trail III		Indicator and colour change
				Final burette reading					Ferroin indicator
				Initial burette reading					Blue green to
				Volume of FAS run down (in cm^{3})					
				Back titrate valve = (c) cm^{3} Amount of potassium dichromate (in terms of FAS) that has reacted with water sample =_ (b) - (c) cm^{3} $1000 \mathrm{~cm}^{3}$ of 1 N FAS solution $=1$ equivalent of oxygen $=8 \mathrm{~g}$ of oxygen.					

Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching powder

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 36 / 36

Copyright ©2017. cAAS. All rights reserved.

