	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 1 / 36

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

18CHEL26 : ENGINEERING CHEMISTRY LAB 2 A. LABORATORY INFORMATION 2 1. Lab Overview 2 2. Lab Content 2 3. Lab Material 4
Textbook of Engineering Chemistry with Lab Manual 9th Edition (English,
Paperback, Shashi Chawla)
Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by
A Vogel (Author) A P. Tatchell (Author) B S. Eurnis (Author) A I. Hannaford
A.I. VOget (Author), A.N. Tatchett (Author), D.S. Turnis (Author), A.J. Harmatoru
(Author), P.VV.G. Smith (Author)
4. Lad Prerequisites
6. Lab Specific Instructions
B OBE PARAMETERS
1. Lab / Course Outcomes
<i>l</i> . Lab Applications
Application of potentiometry to characterize acid and basic sites in numic
substances lesting
The Techniques to study complexation reactions at the mineral/water6
Interface No indicator is used; instead the potential is measured across the
analyte, typically an electrolyte solution
3. Articulation Matrix7
5. Curricular Gap and Content
COURSE ASSESSMENT
1. Course Coverage
2. Continuous Internal Assessment (CIA)
D. EXPERIMENTS
Experiment 01 : Potentiometric estimation of FAS using standard K2Cr2O7 solution
Application of potentiometry to characterize acid and basic sites in numid
substances Testing 11
The Techniques to study complexation reactions at the mineral/water11
Interface No indicator is used; instead the potential is measured across the
analyte, typically an electrolyte solution11
Experiment 02 : Conductometric estimation of acid mixture12
Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid
Experiment 04 : Keywords and identifiers
Experiment 06 : Flame photometric estimation of sodium and potassium
PART - B
Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard
OBSERVATION AND CALCUL ATION: 25
Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION
Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS
Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION 30
EXPERIMENT US: DETERMINATION OF CHEMICAL OXIGEN DEMAND (COD) OF WATER
powder

A STATE OF A	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 2 / 36

Copyright ©2017. cAAS. All rights reserved.

Note : Remove "Table of Content" before including in CP Book

18CHEL26 : ENGINEERING CHEMISTRY LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	BS
Year / Semester :	2019/1	Academic Year:	2019-20
Course Title:	Engineering Chemistry Lab	Course Code:	18CHEL26
Credit / L-T-P:	1 / 0-0-2	SEE Duration:	180 Minutes
Total Contact Hours.	42 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Test	2
Course Plan Author:	Dr. Manju M	Sign	Dt:04-01-2019
Checked By:	Dr. Shankara B.S	Sign	Dt:14-08-2019

2. Lab Content

Unit	Title of the Experiments	Lab	Concept	Blooms Level
		Hours		
	PART- A			
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7	2	Redox	L4
	solution.		Reaction	Analyzing
			S	â
				L5
				Evaluation
2	Conductometric estimation of acid mixture.	2	Acid Base	L4
			Reaction	Analyzing
				Ê
				L5
				Evaluation
3	Determination of Viscosity co-efficient of the given liquid using	2	Cohesive	L4
	Ostwald's viscometer.		Force	Analyzing
				£
				L5
				Evaluation
4	Colorimetric estimation of Copper.	2	Measurem	L4
			ent of	Analyzing
			Optical	£
			Density	L5
				Evaluation
5	Determination of pKa of the given weak acid using pH meter.	2	PH	L4
			measure	Analyzing
			ment	£
				L5
				Evaluation
6	Flame photometric estimation of sodium and potassium.	2	Atomizati	L4
			on	Analyzing
				£
				L5
				Evaluation
	PART- B			
1	Estimation of Total hardness of water by EDTA method.	2	Complexo	L4
			metric	Analyzing
			titration	£

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Title:	Engineering Chemistry Lab	Page: 3 / 36

Copyrigh	L©2017, CAAS. All rights reserved.		1	
				L5
				Evaluation
2	Estimation of CaO in cement solution by rapid EDTA method.	2	Complexo	L4
			metric	Analyzing
			titration	£
				L5
				Evaluation
3	Determination of percentage of Copper in brass using standard	2		L4
	sodium thiosulphate solution.		lodometri	Analyzing
			c titration	£
				L5
				Evaluation
4	Determination of COD of waste water.	2		L4
			Redox	Analyzing
			titration	£
				L5
				Evaluation
5	Estimation of Iron in haematite ore solution using standard K 2	2	Redox	L4
	Cr 2 O 7 solution by external		titration	Analyzing
	indicator method.			£
				L5
				Evaluatio
6	Estimation of percentage of available chlorine in the given	2		L4
	sample of bleaching powder		lodometri	Analyzing
			c titration	£
				L5
				Evaluation
	· · · · · · · · · · · · · · · · · · ·			

3. Lab Material

Unit	Details	Available
1	Text books	
i	Textbook of Engineering Chemistry with Lab Manual 9th Edition (English, Paperback, Shashi Chawla)	In Lib
ii	Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by A.I.	In Lib
	<u>Vogel</u> (Author), <u>A.R. Tatchell</u> (Author), <u>B.S. Furnis</u> (Author), <u>A.J. Hannaford</u> (Author), <u>P.W.G. Smith</u> (Author)	
2	Reference books	
i	G.H.Jeffery, J.Bassett, J.Mendham, R.C.Denney, "Vogel's Tex book of quantitative Chemical Analysis Fifth Edition(New) ,	In Lib
ii	O.P.Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age International Publisers.	In Lib
iii	Gary D. Christian, "Analytical chemistry ", 6 th Edition, Wiley India.	In Lib
ii	Engineering Chemistry Lab manual	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
i	https://sites.google.com/chemistry-laboratory-w.	Available on web
ii	https://science.nrao.edu > Facilities > CDL	Available on web
iii	https://www.acs.org//chemistryclubs//simulati	Available on web
iv	https://www.augusta.edu//chemistryandphysics/	Available on web
v	www.ncl-india.org/	Available on web

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18CHEL26	Engineering	Titrations/students have done these kind	1	
		Chemistry Lab	of experiments in lower standards.		

and a	TUTE OF 20.	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
		Title:	Engineering Chemistry Lab	Page: 4 / 36
Copyright	©2017. cA	AS. All rights reserved.		
			Instrumental analysis/students have 1 studied in theory part regarding these	

 experiments.

 Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Never work in the laboratory unless a demonstrator or teaching assistant is	
	present.	
2	Do not throw waste such as match stems filter papers etc. into the sink. They	
	must be thrown into the waste jars.	
3	Keep the water and gas taps closed expect when these utilities are needed.	
4	Never taste any chemical unless instructed to do so and don't allow	
	chemicals to come in contact with your skin.	
5	While working with gases, conduct the experiment in a fume hood.	
6	Keep all the doors and windows open while working in the laboratory.	
7	You should know about the hazards and properties of every chemical which	
	you are going to use for the experiment. Many chemicals encountered in	
	analysis are poisonous and must be carefully handled.	
8	Sulphuric acid must be diluted only when it is cold .This should be done by	
	adding it slowly to cold water with stirring ,and not vice versa.	
9	Reagent bottles must never be allowed to accumulate on the work bench.	
	They should be placed back in the shelves as and when used.	
10	Containers in which reaction to be performed a little later should be labeled.	
	Working	
	space should be cleaned immediately.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
	Chemical Splash Goggles:	
1	Purchase a pair of chemical safety goggles).	
2	Bring your goggles with you for all laboratory sessions of your chemistry	
	class. You will not be allowed to work in the lab without your goggles	
3	Wear your goggles when anyone in the lab is conducting an experiment.	
	Laboratory Coats:	
4	Purchase a lab coat that fits you well. Lab coats that are too tight or too	
	loose are not safe. Sleeves that are too long should be rolled up.	
5	If your lab coat has not been contaminated with a hazardous substance, you	
	may wash it as you do your other clothing.	
6	If your lab coat becomes contaminated with a hazardous substance, as with	
	any other lab spill, notify your instructor immediately.	
7	Contaminated lab coats will be handled by your instructor as they deem	
	appropriate.	
	Nitrile Gloves:	
8	Nitrile gloves are to be worn only during portions of experiments where	
	specified by the experimental procedure, when instructed by the instructor	
	or supervisor, or when working with substances for which the protocol	
	requires the use of gloves.	
9	Note that nitrile gloves are flammable and will stick to your skin if they burn.	
	Do not wear gloves while working with Bunsen burners.	
10	Do not wear gloves outside the lab. When a chemical comes in contact with	
	a glove, remove the glove immediately and place it in the glove waste.	
11	Do not touch surfaces such as door knobs, computer keyboards, and chairs	
	while wearing Pag gloves.	

6	SKIT		Teaching Process	Rev No.: 1.0				
Doc Code: BS-Sk		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020				
	Title: Engineering Chemistry Lab			Page: 5 / 36				
Copyrigh	opyright ©2017. CAAS. All rights reserved.							
12	Glove	s with holes o	r tears must be removed immediately and disposed of					
	prope	rly.						
13 Dispose of gloves at the end of each experiment in the glove waste containers provided in each lab.								

B. OBE PARAMETERS

1. Lab / CourseOutcomes

#	COs	Teach.	Concept	Instr	Assessment	Blooms '					
		Hours		Method	Method	Level					
	PART- A										
1	Handling different types of instruments for quantitative analysis of samples.	21	Instrumental method of analysis	Demons trate	Test	L3					
	PAR	Т- В									
2	Volumetric analysis of various samples quantitatively.	21	Volumetric analysis	Demons trate	Test	L3					
-	Total	42	-	-	-	-					

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level				
PART- A							
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	CO1	L3 & L4				
2	Conductometric estimation of acid mixture.	C01	L3 & L4				
3	Determination of percentage of Copper in brass using standard sodium thiosulphate solution.	CO2	L3 & L4				
4	Determination of COD of waste water.	CO2	L3 & L4				

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

4. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	Level
18CHE271.	Estimate amount of FASpotentio metrically through redox titrations.	x	x	х										
18CHE27.2	Calculate amount of acid mixture conducto metrically through neutralization titration.	x	x	х										
18CHE27.3	Compute amount of copper bu measuring absorbence using optical method	x	x	х										
18CHE27.4	Determine Pka Value of given sample using Ph meter.	x	x	x										
18CHE27.5	Estimation of co-efficient of viscosity of given organic liquid using ostwald's method.	x	x	x										

A REAL PROPERTY AND A REAL	SKIT		Tea	achin	g Pr	oces	s				Rev N	lo.: 1.0	
	Doc Code:	BS-SKIT.Ph5b1.F03									Date: 28-01-2020		
Constant of the second se	Title:	Engineering Chemi	stry l	_ab							Page:	6 / 36	
Copyright ©2017. cA	AS. All rights reserved.												
18CHE27.6	Estimate a	mount of given	x	х	х								
	sample using	flame photo metric	:										
	method.												
18CHE27.7	Estimation of	hardness of given	х	х	х								
	sample	by using											
	complexome	tric titrations.											
18CHE27.8	Caluculate th	ne % of CaO in giver	x	х	х								
	sample by ra	pid EDTA method.											
18CHE27.9	Estimate the	% of copper in giver	X	х	х								L3
	brass samp	le by iodometric	:										
	titration.	-											
18CHE27.10	Calculate the	% of iron in given	х	х	х								L3
	ore solutior	n using external											
	indicator met	hod.											
18CHE2711.	Estimate	total oxidisable	х	х	х								
1	impurities of	given waste water											
	by redox titra	tions.											
Estimate th	e % of chlorin	e in given bleachin	g DOV	vder	sam	ple t	ov io	dome	etric	metho	bd		

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Note: Anything not covered above is included here.

(. COURSE ASSESSMENT

1. Course Coverage

	5			
Unit	Title	Teachi	No. of question in Exam	CO Levels
BSH				
Prepared by		Checked by		Approved

- COLUMN A
And And
(59)

SKIT	Teaching Process
Doc Code:	BS-SKIT.Ph5b1.F03
Title:	Engineering Chemistry Lab

pyright ©2017 cAAS All rights reserved

Copyrig	nt ©2017. CAAS. All rights reserved.										
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		HOUIS	PART	- A							
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	02	1	-	-	-	-	-	1	C01	L3 & L4
2	Conductometric estimation of acid mixture.	02	1	-	-	-	-	-	1	C01	L3 & L4
3	Determination of Viscosity co- efficient of the given liquid using Ostwald's viscometer.	02	1	-	-	-	-	-	1	C01	L3 & L4
4	Colorimetric estimation of Copper.	02	1	-	-	-	-	-	1	CO1	L3 & L4
5	Determination of pKa of the given weak acid using pH meter.	02	1	-	-	-	-	-	1	CO1	L3 & L4
6	Flame photometric estimation of sodium and potassium.	02	1	-	-	-	-	-	1	CO1	L3 & L4
			PART	- B							
1	Estimation of Total hardness of water by EDTA method.	02	-	1	-	-	-	-	1	CO2	L3 & L4
2	Estimation of CaO in cement solution by rapid EDTA method.	02	-	1	-	-	-	-	1	CO2	L3 & L4
3	Determination of percentage of Copper in brass using standard sodium thiosulphate solution.	02	-	1	-	-	-	-	1	CO2	L3 & L4
4	Determination of COD of waste water.	02	-	1	-	-	-	-	1	CO2	L3 & L4
5	Estimation of Iron in haematite ore solution using standard K 2 Cr 2 O 7 solution by external indicator method.	02	-	1	-	-	-	-	1	CO2	L3 & L4
6	Estimation of percentage of available chlorine in the given sample of bleaching powder	02	-	1	-	-	-	-	1	CO2	L3 & L4
-	lotal	42	1	8	5	5	5	5	20	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	10	C01,	L3
			8
			L4
CIA Exam - 2	10	C02,	L3
			£
			L4
CIA Exam - 3	10	CO1 & CO2,	L3
			£
			L4
Other Activities - define - Slip test			L2, L3, L4

	and the second second	SKIT	Teach	ning Process	Rev No.: 1.0			
		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020				
		Title:	Engineering Chemistry Lat	0	Page: 8 / 36			
Cop	opyright ©2017. cAAS. All rights reserved.							
Final CIA Marks			10	-	-			

- SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	15 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

PART - A

D. EXPERIMENTS

Experiment 01 : Potentiometric estimation of FAS using standard K2Cr2O7 solution.

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Pot	tentiometric	estimation	of FAS usi	ng standard	K 2 Cr 2 O	7 solution.
2	Course Outcomes	Est	imation of a	mountofFA	SPotentio	metricallyti	hrough redo	xreaction
3	AIM Matarial (PO	entiometric	estimation	of FAS USI	ng standard	K 2 Cr 2 0	/ solution.
4	Material/		Digital P	otentio mete	r			
	Pequired			arto	Jues			
	Nequileu		> 100ml b	eaker				
			 Glass ro 	d.				
5	Theory, Formula,	PRI	NCIPLE: Red	ox titrations of	can be carrie	d out potent	iometrically u	using
	Principle, Concept		inum colom	al alactrada	combination	. For the rea	ction	5
		ριαι	inum-catom	el electrode	compination	. For the rea	CUON:	
			R	educed form	\rightarrow Oxidized f	orm + ne ⁻ ,		
		The	potent	ial, E,	is giv	en by	Nernst	equation,
					-	-		
			0.050	1 [Ovidi	zedforml			
		E	$=E^{o}+\frac{0.055}{2}$	$\frac{1}{\log \log \log 1}$				
			n	[Redu	ced form]			
		Wh	ere, E° is the	e standard po	otential of the	e system, and	d [X] represer	nt the molar
		con	centration x.					
		Sup	pose that, in	beaker we h	ave acidified	Fe ²⁺ solution	, and we add	slowly
		K ₂ C	r₂O7 from a b 6 Fe	urette, then f $^{2+}$ + Cr ₂ O _{7 $\xrightarrow{2^{-}}$} 6	following read Fe + ₃₊ 2Cr ₃₊	ction takes p	lace.	
		Befo	ore the equi	valence poin	t, the poten	tial is deterr	mined by the	Fe ²⁺ / Fe ³⁺
		syst	em.					
	$E = E^{o} + \frac{0.0591}{n} \log \frac{[\text{Fe}^{3+}]}{[\text{Fe}^{2+}]} = 0.75 V + 0.0591 \log \frac{[\text{Fe}^{3+}]}{[\text{Fe}^{2+}]}$							
		The potential of the solution will be around 0.75V (since the contribution from						
		the	second term	n is negligible	e).			
		Afte	er the equiva	alence point	, the potenti	al is determ	ined by the ($2r_2O_7/Cr^{-3}$
		syst	em.					

SKIT		SKIT		Teaching	g Process		Rev No.: 1.0
1		Doc Code:	BS-SKIT.Ph5b1.F	03			Date: 28-01-2020
		Title:	Engineering Che	mistry Lab			Page: 9 / 36
Copyng	gnt ©2017. CA	AS. All rights reserved.	0.0501	$[Cr_2 O_{7_2}]$	1	[Cr ₂ O	7 ²⁻
			$E = E^{o} + \frac{0.0591}{6}$	$\log \frac{1}{\left[\frac{1}{2} + 1 \right]}$	$\frac{1}{2} = 1.33 V + 0$	$0.00985 \log \frac{1}{\Gamma_{Cr}}$	1
			0	[Cr [°]]			+]
			The potential of	the solution v	vill be aroun	d 1.3V	
			At the equivalence	ce point, the p	potential is a	verage potential	of both systems.
			Thus, there is an	abrupt increa	ise in potent	ial of the solution	near the end point.
6	Procedu	ire,	Pipette out 25 c	m ^o of ferrous	ammonium	sulfate (FAS) so	lution into a 100 ml
			beaker. Add two	test tubes fu	ll of dilute si	ulphuric acid. Imr	nerse the platinum -
			calomel electroc	les assembly	in the solut	ion. Measure the	potential by adding
			K ₂ Cr ₂ O ₇ solution	from the bur	ette in incre	ments of 0.5 cm	3. Stir the mixture by
			blowing the air fo	or 10 seconds	. Measure th	e potential of the	each addition.
			Plot a graph of <i>L</i>	ΔE/ ΔV again	st volume o	f K ₂ Cr ₂ O ₇ as show	vn in the figure. Find
			calculate the no	rmality of the	e FAS solutio	n. Knowing the	equivalence point, the amount of FAS
			per liter of the so	lution.			
7	Reactio	n Equation					
			6 Fe ²⁺ + C	$r_2O_7^{2-} \rightarrow 6 \mathrm{Fe}^3$	³⁺ + 2Cr ³⁺		
			Vol.of				
			K ₂ Cr ₂ O ₇ in cm ³	Е	ΔV	ΔΕ	ΔΕ/ΔV
				in mv			
			0.0				
			0.5				
8			1.0				
	Observa	tion Table,	1.5				
			2.0				
			2.5				
			3.0				
			3.5				
			4.0				
			4.5				
			5.0				
9	Sample	Calculations					
			<u>Calculati</u>	ons:			
	$(N_1 V_1) K_2 Cr_2 O_7 = . (N_2 V_2)_{FAS}$ Where V_1 = Vol of K_2 Cr_2 O_7 at the equivalence point (from the				from the graph)		
N_1 = Normality of K ₂ Cr ₂ O ₇ solution = N (to be			given)				
	$V_2 = Vol. of FAS solution = 25 cm^3$						
	$N_2 = Normality of FAS solution = \dots$						
	$\therefore N_2 = \frac{1}{N} = \frac{\Lambda}{2} = \dots \dots N$				N		
				V_2	20 Normality y	Gram equivalor	t mass
			Mass of F	FAS per dm ³ =	Normality of	of FAS x Gram eq	uivalent mass of
			FAS			202 a	
				=.	X	572 g =	S

and the second s	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
A REAL PROPERTY AND A REAL	Title:	Engineering Chemistry Lab	Page: 10 / 36
Copyright ©2017. cA	AS. All rights reserved.		

10	Graphs, Outputs	$\frac{\Delta E}{\Delta V}$ Equivalence point (V) Volume of K2Cr2O7 in cm3
11	Results & Analysis	Normality of FAS = Mass of FAS present in one dm ³ of solution = g
12	Application Areas	Application of potentiometry to characterize acid and basic sites in humid substances Testing
		The Techniques to study complexation reactions at the mineral/water.
		Interface No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution.
13	Remarks	
14	Faculty Signature with Date	

Experiment 02 : Conductometric estimation of acid mixture

-	Experiment No.:	2	Marks		Date		Date	
					Planned		Conducted	
1	Title	Cond	uctometric e	stimation of a	acid mixture.			
2	Course Outcomes	Calcu	late amount	of acid mixtu	ire conductor	metrically th	rough neutral	ization
		react	ion					
3	Aim	Cond	uctometric e	stimation of a	acid mixture	by using star	ndard NaOH(1	1 N).
4	Material /	Þ	 Digital Cor 	nductometer				
	Equipment	7	 Conductiv 	ity cell				
	Required	7	 10ml Bure 	tte				
			100ml bea	aker				
		7	Acid mixt	ure				
-		2	1N NaOH	Solution	-			
5	Principle	In co soluti hence again replac durin hydrc weak stron stron condu neutr steep the m	nductometric ion near the e the neutral st titre valu- cement of io g titration. W oxide the stro acid (CH3CO g acid. NaOH addition of uctance of th le Na ⁺ ion. Th nuing the a alization of a oly due to the nodel graph.	 titrations, neutralization ization point ization point ization point ization point ong of a partion when a mixtur ong acid, HC OH) comment + HCl + HCl + CH₃COOH sodium hypelatter becan is trend con addition of acetic acid. Feresence of 	there is a spon point. Ho is determine ciple underly cular conduct re of HCl and l will be neu aces only after droxide to ause highly m tinues till all NaOH, cond urther additi f free OH ⁻ ior	udden chang wever, the of ed graphicall ying conduc- tivity by ions d CH ₃ COOH tralized first. er the comp hydrochlorio hydrochlorio the H ⁺ ions ductance ind on of NaOH ns. A typical	ie in conduct change is no y by plotting tometric titra is titrated ag The neutraliz lete neutraliz NaCl + H ₂ O H ₃ COONa + H ₂ c acid decr s are replaced of HCl are ne creases slow raises the co titration curve	tance of the ot sharp and conductivity ations is the conductivity ainst sodium zation of the zation of the zation of the d by the less eutralized. On dy due the onductance e is shown in

•

		SKIT	Teaching Process Rev No.					
	ED)	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020				
Copyri	ght ©2017. cA	I ITLE: AS. All rights reserve	Lngineering Chemistry Lab	Page: 11 7 36				
6	Procedi	ıre	Fill a micro burette with the standard NaOH solution. Pipette out 50 cm ³ of th given acid mixture into a clean 100 cm ³ beaker. Place the conductivity cell in the beaker so that the conductivity cell is completely immersed in the acid mixture Add 0.5 cm ³ NaOH solution from the burette. Stir the solution gently and record the conductance. Continue the measurement of conductance after each addition of 0.5 cm ³ of NaOH till 10 cm ³ . Plot a graph of conductance on Y- ax versus volume of NaOH on X-axis. The conductance titration curve is marked be two breaks; the first one corresponds to the equivalence point of HCl (V ₁ cm and the second to that of CH ₃ COOH (V ₂ cm ³). From the graph, find the neutralization points and the volume of NaOH required to neutralize the acids					
7	Reactio	n Equation	NaOH + HCl	► NaCl +H2O				
			NaOH + CH3COOH	→ CH ₃ COONa + H ₂ O				
8	Observa	tion Table,						
	Look-up Output	Table,	Vol. of NaOH (cm³)	Conductance (mS)				
			0.0					
			0.5					
			1.0					
			1.5					
			2.0					
			2.5					
			3.0					
			3.5					
			4.0					
			4.5					
			5.0					
9	Sample Calcula	tions	Normality of NaOH =N (to b Volume of NaOH required to neutral	e given) ize $HCl_1 = V cm^3$				
			Volume of NaOH required to neutral	$Z = CH_3 COOH = (V_2 - V_1) cm$				
			$N_{\text{HCl}} = \frac{[N \times V]_{\text{NaOH}}}{50} = \frac{\dots \times V_1}{50} = \dots$ NCH ₃ COOH = $\frac{[N \times (V_2 - V_1)]_{\text{NaOH}}}{50} = \dots$	(b)				
			Therefore, weight of HCl/dm ³ = $N_{HCl_3} \times Eq.ma$ weight of CH ₃ COOH/dm ³ = N_{CH_3COO}	So of HCl= 'a' x 36.5 = $_{OH}$ x Eq. mass of CH ₃ COOH = 'b' x 6				

SKIT			Teaching Process	Rev No.: 1.0
1	Doc Code:		BS-SKIT.Ph5b1.F03	Date: 28-01-2020
Title:			Engineering Chemistry Lab	Page: 12 / 36
Copyrig	ght ©2017. cA	AS. All rights reserve	d.	
10	Graphs,	Outputs	V_1 V_2	
1	Results	& Analysis	 Normality of HCl =N Weight of HCl per liter = g Normality of CH₃COOH =N Weight of CH₃COOH per liter = g 	
12	Applica	tion Areas	The experimental determinations of the conducting properties of electrol important as they can be used to study quantitative behavior of ions in	ytic solutions are very solution.
			They can also be used to determine the many physical quantities such as dissociation and dissociation constants of weak acids and bases, ionic pro- solubility and solubility	duct of water,
13	Remark	S		
14	Faculty with Dat	Signature te		

Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid

Experiment No.:	3	Marks		Date		Date	
				Planned		Conducted	
Title	Deter	mination of	Viscosity c	o-efficient o	f the given	liquid using	g Ostwald's
	visco	meter.			-		
Course Outcomes	Estim	ation of co-	efficient of v	iscosity of g	given organio	c liauid using	g Ostwald's
	meth	od.		, , ,	5 5		5
Aim	Deter	mination of	Viscosity c	o-efficient o	f the given	liguid using	g Ostwald's
	visco	meter.	-		2		
Material /	Þ	OSTWAL	D'S VISCOM	ETER			
Equipment	Þ	10ml grad	luated Pipet	te			
Required	×	Organic L	iquids				
	A	water bat	h				
Theory	Visc	osity arises	due to frica	tion betwee	n moving la	yers of a liq	uid. A liquid
-	flowir	ng through a	cylindrical tu	be of uniforr	n diameter is	s expected to	move in the
	form	of molecula	ar layers. La	ayer close to	o the surfa	ce is almos	st stationary
	while	that t the ax	is of the tube	e moves fast	er than any c	other interme	diate layer. Á
	slow	slow moving laver excerts a drag or friction on its nearest moving laver					
	back	backwards. This property of the liquid, which retards or opposes the motion					
	betw	between the layers, is called viscosity. The Coefficient of viscosity is defined as					
	the ta	angential for	ce per unit a	area required	d maintaining	a unit velo	ity gradient
	betw	een the two	successive la	yers of the li	quid situated	unit distance	e apart. The
	Experiment No.: Title Course Outcomes Aim Material / Equipment Required Theory	Experiment No.:3TitleDeter viscoCourse OutcomesEstim methAimDeter viscoMaterial/ >Equipment Required>TheoryVisco flowin form while slow backy betwo the ta betwo	Experiment No.:3MarksTitleDetermination of viscometer.Course OutcomesEstimation of co- method.AimDetermination of viscometer.AimDetermination of viscometer.Material Required>Viscosity arises flowing through a form of molecula while that t the ax slow moving laye backwards. This p between the laye the tangential for between the two s	Experiment No.:3MarksTitleDetermination of Viscosity c viscometer.Course OutcomesEstimation of co-efficient of v method.AimDetermination of Viscosity c viscometer.Material/Equipment>Required>Viscosity arises due to frica flowing through a cylindrical tu form of molecular layers. La while that t the axis of the tube slow moving layer excerts a backwards. This property of between the layers, is called v the tangential force per unit a between the two successive la	Experiment No.:3MarksDate PlannedTitleDetermination of Viscosity co-efficient of viscometer.Determination of Viscosity co-efficient of viscosity co-efficient of viscometer.AimDetermination of Viscosity co-efficient of viscometer.Material Required>OSTWALD'S VISCOMETER > 10ml graduated Pipette > organic Liquids > water bathTheoryViscosity arises due to frication between flowing through a cylindrical tube of uniform form of molecular layers. Layer close to while that t the axis of the tube moves fast slow moving layer excerts a drag or fit backwards. This property of the liquid, w between the layers, is called viscosity. The the tangential force per unit area required between the two successive layers of the liquid between the two successive layers of the liquid	Experiment No.:3MarksDate PlannedTitleDetermination of Viscosity co-efficient of the given viscometer.Course OutcomesEstimation of co-efficient of viscosity of given organic method.AimDetermination of Viscosity co-efficient of the given viscometer.Material/Equipment Required>OSTWALD'S VISCOMETER > Organic Liquids > water bathTheoryViscosity arises due to frication between moving la flowing through a cylindrical tube of uniform diameter is form of molecular layers. Layer close to the surfa while that t the axis of the tube moves faster than any c slow moving layer excerts a drag or friction on it backwards. This property of the liquid, which retards between the layers, is called viscosity. The Coefficient of the tangential force per unit area required maintaining between the two successive layers of the liquid situated	Experiment No.:3MarksDate PlannedDate ConductedTitleDetermination of Viscosity co-efficient of the given liquid using viscometer.Determination of co-efficient of viscosity of given organic liquid using method.AimDetermination of Viscosity co-efficient of the given liquid using viscometer.Determination of Viscosity co-efficient of the given liquid using viscometer.Material/>OSTWALD'S VISCOMETER > 10ml graduated PipetteRequired>Organic Liquids viscosity arises due to frication between moving layers of a liq flowing through a cylindrical tube of uniform diameter is expected to form of molecular layers. Layer close to the surface is almos while that t the axis of the tube moves faster than any other intermed slow moving layer excerts a drag or friction on its nearest in backwards. This property of the liquid, which retards or opposes between the layers, is called viscosity. The Coefficient of viscosity is the tangential force per unit area required maintaining a unit veloc between the two successive layers of the liquid situated unit distance

	SKIT Doc Code:			Teaching	Process			Rev No.: 1.0
(BS-SKIT.Ph5b1	.F03				Date: 28-01-2020
		Title:	Engineering Ch	nemistry Lab				Page: 13 / 36
Copyrig	ant ©2017. CA	AS. All rights reserved	Coefficient of vis	cosity of a liquid	l is given b	by the P	oiseuille's for	mula.
			$\pi \operatorname{pr}^4 t$		-	-		
			$\eta = \frac{\eta p_1}{\eta p_1}$					
			٥٧١ Where 'v' is the	volume of the	liauid. 'r' i	s the r	adius of the t	ube and 'p' is the
			pressure betwee	en the two ends	of the tub	be is the	e Coefficient o	of viscosity. If equal
			volumes of the t	wo different lic	quids are a	allowed	I to flow thro	ugh the same tube
			under identical c	conditions then,				
			$\underline{\eta_1} \underline{t_1 a_1}$					
			$\eta_2 t_2 d_2$					
			The time't' taker	n by the given	liquid to t	ravel t	nrough a cert	ain distance in the
			tube is determin	ned. The time't'	taken by	/ stand	ard liquid to	travel through the
			and also the coe	fficient of visco	sity of the	standa	ies of the two	fficient of viscosity
			of test liquid is c	alculated.	oney of the	Standa		
			-					
6	Procedu	ure	Take a dry visc	ometer. (Do no	ot wash!)	Attach	a rubber to	the narrow limb.
			Immerse the vis	cometer in wate	er bath an vider limb	of the v	vertically to a	a stand. Transfer 15
			Suck the liquid a	nd fill the bulb	on the nar	row lim	b slightly abo	ve the upper mark.
			Allow the liquid	to flow down	through t	he cap	oillary. Start a	stop clock when
			the level of the li	quid crosses the	e lower m	ark. No	te down the ti	me of flow.
			kemove the viso	cometer from the	the beak	kemove er llsin	e the rubber t	ube. Pour out the
			rinse the viscom	eter. Dry it in air	over for 20	0 minut	es.	
			Take out the vis	cometer and fa	llow a sim	ilar pro	cedure for de	termining the
			average time of	flow for deioniz	ed water.	Use a	different pipe	tte for water).
			Using a thermo temperature Fro	ometer note th m your teacher	e tempei	rature	of the Water f.d. (density o	f organic liquid) da
			(density of water) and η_2 (Viscosi	ity coeffic	ient of	water)	
			Find n₁(viscosity	coefficient of or	ganic liquj	d) using	g the relation.	
					$n = t_1^{t_1} d$	¹ Xn		
					$\eta_1 = \overline{t_2 d}$	2 ² 2		
7	Model D	Diagram		ក្ត	2	2		
		- J -						
			1					
			6	158	_	π	$\mathrm{pr}^4 t$	
						$\eta = \frac{1}{2}$	<u> </u>	
			$t_1 d_1 \mathbf{v}$	X	- ×	0	V I	
			$\eta = \frac{1}{t d} \lambda \eta$, =	;	=		milli poise
			$\iota_w u_w$					
8	Observa	tion Table.						
	Look-up	Table,	OBSERVATION	AND CALCULA	TION:			
	Output				Time	of flow	in seconds	
				Trial 1	Trial	2	Trial 3	Average
			Water					
			Test liquid					
9	Samnle		Lab temperature	=	°C			
	Calculat	tions	F					

A REAL PROPERTY OF	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
Anna Ch	Title:	Engineering Chemistry Lab	Page: 13 / 36
opuright @2017	CAAS All rights recorded	-	

Copyrig	ght ©2017. cAAS. All rights reserve	d.
		d1 (density of organic liquid) = g cm ⁻³
		d _w (densityofwater)= g cm ⁻³
		η_{w} (Viscosity coefficient of water) = millipoise
		$\frac{\eta_1}{\eta_w} = t \frac{t_1 d_1}{d_{ww}}$
		$\eta_1 = \frac{t_1 d_1}{t_w d_w} X \eta_w = \frac{x + x}{\dot{\epsilon}} = \dots \dots$
10	Graphs, Outputs	Viscosity coefficient of the given liquid
11	Results & Analysis	Viscosity coefficient of the given liquid = millipoise.
12	Application Areas	Viscosity is how engineers measure the resistance of fluids to shear stress.
		The viscosity equation is useful for calculating a material's viscosity when you know the force being applied to the fluid and the resulting velocity
13	Remarks	
14	Faculty Signature with Date	

Experiment 04 : Keywords and identifiers

-	Experiment No.:	4	Marks		Date		Date		
					Planned		Conducted		
1	Title	Color	imetric estim	ation of Cop	per.				
2	Course Outcomes	Comp	ute the amo	ount of Cu by	measuring a	absorbance u	using optical	method	
3	Aim	Colori	Colorimetric estimation of Copper by a givenCuSO4 solution .						
4	Material /		Photo colo	rimeter					
	Equipment	A	Cuvate tu	be					
	Required	٨	50ml volur	netric flask					
		٨	Copper su	lphate soluti	ons				
		A	NH3 soluti	ions					
5	Theory, Formula,	When	a monochro	matic light o	of intensity	l₀ is incident	on a colored	d solution, a	
	Principle, Concept	part ((I_a) of it is a	bsorbed, a p	oart (I _r) is re	flected and	the remainin	g part (I _t) is	
		transr	nitted.						
		Thus,	$\mathbf{I}_{o} = \mathbf{I}_{a} + \mathbf{I}_{r} + \mathbf{I}_{t}$						
					I_{a}				
		Absor	hance is giv	en as A - loc	$\frac{b}{I}$				
		AD301	Dance is give		5 ¹ t				
		Accor	ding to Reer	- Lambert's l	aw $\Delta = FC$				
		Whe	re E = molar	extinction co	pefficient a c	onstant for a	ny particular		
		, true		red substanc	e for a given	wave length	of light		
			C= Mola	r concentrati	on of the sol	ution and	or ugitt,		
			l = path	length.					
			When the	nath length	is kent cor	stant then	Λ ^α c Hend	e a plot of	
		absor	hance Δ ag	ainst concer	tration c giv	istant, then	t line		
		Chem	ical analysis	through me	asurements (of absorption	n of light of	a particular	
		wave	ength is kn	own as cold	primetry. The	absorbance	of light of	a particular	
		wavel	ength by a s	ubstance in	solution varie	es directly w	vith its conce	ntration and	
		the t	the thickness of the solution. When the thickness of the medium is kent						
		const	ant, the abso	rbance direc	tly depends	upon the cor	ncentration		
			A series of	solutions wi	th different	concentratio	ns of cupram	monium ions	
		is pre	epared and	absorbance	of each is	measured	at 620 nm	radiation. A	

4		SKIT		Teaching Process Rev No.: 1.0						
		Doc Code	BS-SKIT.Ph5b1	.F03			Date: 28-01-2020			
Copyrie	abt ©2017 cA	AS All rights reserve	Engineering C	Engineering Chemistry Lab Page: 15 / 36						
		Ad. Attinging reserve	calibration grap	oh is obtained.	The absorban	ce of cupram	monium ions of			
			unknown soluti	on is also meas	ured and the u	ınknown volun	ne is determined			
			using the calibra	ation graph.						
6	Procedu	Ire	Take six 50 cm ³	volumetric flask	s. Transfer 0, 5, 1	0. 15 and 20 cr	n³ of CuSO₄ to first			
	loccut		five flasks. Take	the unknown s	olution in the si	x flasks. Add 5	cm ³ of ammonia			
			olution to each one of the six flasks. Dilute up to the mark and mix well. After 10							
			ninutes, set the absorbance of first solution to zero at 620 nm radiations in the							
			instrument. The	nstrument. Then, measure the absorbance of remaining five solutions with the						
			Draw a	calibration curv	e by volume of	CuSO₄on x-axi	s and absorbance			
			on y- axis. (Drav	v a straight line	passing through	the origin). Us	ing the graph and			
			knowing the ab	sorbance of six	solutions, find	out the volum	e of CuSO₄ in the			
			sixth flask.	DEC.						
				° q q		8 8528 -	5			
			1-							
							\rightarrow			
	Model [Diagram								
7				9	8	J J				
ľ										
8	Observa	tion Table,	Sl.No	Vol. of CuSO ₄	Volume of	Concentratio	n Absorbance			
	Look-up	Table,	,	in cm³	ammonia sol.	of copper				
	Output				in cm ³	=1.018 mg x				
						solution				
			(Blank sol.)	0.0	5.0					
				0.0 E 0	5.0					
			1	5.0	5.0					
			2	10.0	5.0					
			3	15.0	5.0					
			4	20.0	5.0					
			5	25.0	5.0					
				Unknown	5.0					
0	Samplo				5.0					
9	Calcula	tions	1000 cm ³ of stoc	ck solution conta	ins 4 g of CuSO ₄	. 5H2O				
				$_{-0.63}^{-0.012} = 0.03.54$ g	$4954 = 1018 \sigma$	of Culper 1000	cm^{3} of stock			
			solution	20 03.51 ~ 17 2	17.51 - 1.010 g		cin of stock			
			1 cm ³ of CuSO ₄ .5	5H ₂ O 1.018/100	00 = 0.001018 g c	of Cu = 1.018 mg	g of Cu			
			Cu present in 'a'	cm ³ of test solut	ion = 'a' cm³ x 1.0)18 mg =	mg			
10	Granhs									
	Siaplis		_							
			A B	,	/					
			S	Absorbace of						
всн			R	test solution						
Prer			B							
1101	pared by	/	2 C	hecked by		Ar	oproved			
	bared by	/	Å C Ç	hecked by	Volume of Test	Aı	oproved			
	bared by	/	Ç C	hecked by Volume	Volume of Test of ଯୋଗପ ୁର୍ଦ୍ଧା cm³	Aţ	oproved			

1	and the second s	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	Anna Cal	Title:	Engineering Chemistry Lab	Page: 16 / 36

Copyrig	ght ©2017. cAAS. All rights reserve	d.
11	Results	REPORT : Volume of CuSO, in the unknown solution = $-cm^3$
	inc suits	
		Mana of Cusin the unknown colution and
		mass of Cu in the unknown solution = mg
12	Application Areas	Colorimeters are widely used to monitor the growth of a bacterial or yeast
		culture.
		Colorimeters are used to measure and monitor the color in various foods and
		beverages, including vegetable products and sugar
13	Remarks	
14	raculty Signature	
	with Date	

Experiment 05 : Determination of pKa of the given sample using pH meter.

-	Experiment No.:	5	Marks	Date		Date			
				Planned	<u> </u>	Conducted			
1	Title	Dete	ermination of	pKa of the given sample	using pH me	eter.			
2	Course Outcomes	Dete	ermination of	pKa of the given weak a	cid using pH	meter.			
3	Aim	Dete	ermination of	pKa of the given sample	using pH me	eter.			
4	Material /		Digital Pl	l-meter					
	Equipment Required		• 10ml Bur	ette					
			100ml be	eaker					
			Combining glass electrodes						
			Weak acid(HCOOH ORCH3COOH)						
			 IN NAUF Stirror 	Solution					
			 Buffer so 	lutions(pH4 pH7 & pH9)					
5	Theory	۸ ۱۸/۵	• Durrer 30	acid which dissociated	nartial in solu	ition			
5	Theory	Fyar	nnle acetic :	cid CH ₂ COOH When we	make a solu	tion of this ac	id a part of		
		the	acid molecul	es dissociate			id, a part of		
			COOH ↔ C	$H_{2}COO^{-} + H^{+}$					
		For	this reaction,	the equilibrium constant	, Ka, is given	by the equation	on:		
			$[H^+]X$	сң соо-]	, , J	<i>,</i> ,			
		K	a=	<u> </u>					
			[CH ₃ C	СООН					
		'Ka'	is also knowr	has acid dissociation con	stant.				
		Ine	negative log	arithm to base 10 of Ka is	called pKa. 1	c., pKa = - log	10 Ka.		
		Con acid	dissociation	ion of a weak acid; say a	cetic acid, in	a Deaker. Let	r Ka de the		
		Let	us partially n	eutralized the acid by ad	ding a base.	sav. NaOH fro	om a burette.		
		Add	ition of base	to the acid result in the	formation of	salt and wat	er. The pH of		
		the	partial neutr	alized solution is related	to pKa of th	e acid by the	e Henderson-		
		Hass	Hasselbalcs equation,						
		pł	i i=pKa+ log	<u>Salt</u>					
		-	-	[Acid]					
		lf we	e titrate the	acid against NaOH, the p	H of the mixt	ure in the bea	aker		

		SKIT	Teaching Process Rev No.: 1.0					
		Doc Code:	BS-SKIT.Ph5b1.	F03			Date: 28-01-2020	
Copy	right ©2017 cA		Engineering Che	emistry Lab			Page: 17 / 36	
	continuously changes. When we plot a graph of pH vs. volume of NaOI get a 'S' shaped curve. We find that there will be sharp jump in pH a equivalence point. At half equivalence point, [Salt] = [Acid]. Thus, accordi the Henderson equation pH becomes equal to pKa at half equivalence point PROCEDURE: Pipette out 25 cm ³ of the given weak acid into a 100 cm ³ b Immerse the combined glass electrode into the acid. Connect the elect terminals to a pH meter. Measure the pH of the acid. Add NaOH solution f micro burette in increments of 0.5 cm ³ . After each addition, stir the solutio measure the pH. (After the jump in the pH, take six more readings). Plot a graph of ΔpH/ΔV against volume of NaOH and determine equivalence point. Plot another graph pH/ volume of NaOH, and note the phalf equivalence point (Which is nothing but pKa).							
6	6 Procedure Transfer 25.0 cm ³ of the given weak acid (acetic acid) into a beaker usin pipette. Immerse a glass electrode - calomel electrode assembly into the a and connect the cell to a pH meter. Measure the pH of the acid. Fill a mi burette with the base (sodium hydroxide). Now add NaOH in the increments 0.5cm ³ , stir the solution carefully, and measure the pH after 10 secon Continue the procedure till the pH shows a tendency to increase rapidly. The few more readings after that. Tabulate the readings. Plot a graph of pH/ wV against V and determine the equivalence point Plot a graph of pH (ordinate) against the volume of sodium hydroxide addinated (abscissa). Determine the pH at half equivalence point. This gives the pk _a of tacid.							
7	Model	Diagram						
8	Observa Look-up Output	ition Table Table	, Volume of , NaOH added (in cm³)	P ^H	Δ٧	Δ Ρ ^μ	Δ Ρ ^μ ΔV	
			0.0					
			0.5					
			1.0					
			1.5					
			2.0					
			2.5					
			3.0					
			3.5					
			4.0					
			4.5					
			5.0					
9	Sample	Calculations	pH=pKa+ lo	g <mark>[Salt]</mark> , [Sal ^a [Acid]	t] = [Acid], pH =	= рКа		

	and the second s	SKIT	Teaching Process Rev No.: 1.0	
1		Doc Code:	BS-SKIT.Ph5b1.F03 Date: 28-01-202	20
4		Title:	Engineering Chemistry Lab Page: 18 / 36	
Copyri	ght ©2017. cAA	AS. All rights reserved.		
10	Graphs		ΔPH ΔV Equivalence point(V) $PH = Pka =$ Equivalence point (V) Half Equivalence point (V/2) Volume of NaOH in cm3 Volume of NaOH in cm3	
11	Results		REPORT: The pKa of the given acid =	
12	Applicat	tion Areas	The measurement of pH is used in medical electronics engineering.	
13	Remarks	s		
14	Faculty with Dat	Signature		

Experiment 06 : Flame photometric estimation of sodium and potassium.

-	Experiment No.:	6	Marks		Date		Date			
					Planned		Conducted			
1	Title	Flam	e photometri	ic estimation	of sodium ar	id potassium.				
2	Course Outcomes	Estir	Estimation of amount of given sample using Flame photometric.							
3	Aim	Flam	e photometri	ic estimation	of sodium ar	id potassium.				
4	Material /		 Flame photometer FLAPHO or Eppendorf. 							
	Equipment		Stock solutions of Na ⁺ and K ⁺ , c = 1 mg/ml.							
	Required		6 number	red 100 ml vo	lumetric flas	KS.				
			Glass pipe	ettes: 1, 2, 10	mi.		•			
							•	SUMI		
			/					100ml		
							•	boakor		
5	Theory						Flame	photometry		
Ŭ	Theory					10.00 at	is a	n atomic		
			>		- 5 3	. 🚳	emissio	n technique		
				DIGITAL OH METER	CALIENATE TEMPONAT	UNECE FUNCTION	used	for the		
							detectio	n of metals.		
							lf a	solution		
							containi	ng metallic		
		salts	is aspirated	into a flame,	a vapour, wł	nich contains	metallic ato	ms, will be		
		form	ed.							
		The o	electrons from	m the metall	ic atoms are	then				
		excit	ed from grou	ind state (E1)	to higher en	ergy state (Ei	n) where n= 2	, 3, 4,/,		
		Dy II	laking use of	thermal ene	rgy of flame.	From nigner	energy state	S, (Fr. F1. h.)		
		these	electrons w	nit return to i	the ground st	ate by emitti	ing radiations	(ΕΠ-ΕΙ= Πγ		
		whic	$e_{11-2,3,47}$) practeristic of	each eleme	ot				
		white	in are the che		caenciente	110.				
					Na*					
			Exc	itation Energ	y î↓hγ (emiss	sion)				
				Dis	sociation	, ,				
		Na	Cl(s)NaCl	(g)		Na(g) + Cl	(g)			
					Energy					
					K*					

	a second by	SKIT	Tea	ching Process	Rev No.: 1.0
(Doc Code:	BS-SKIT.Ph5b1.F03		Date: 28-01-2020
4	And a state of the	Title:	Engineering Chemistry La	ab	Page: 19 / 36
Copyri	ight ©2017. cA	Doc Code: Title: AS. All rights reserved.	Elame photometer correla hese elements.It is simple easily excited (sodium and filter of the element who between the flame and t between the flame and	ab T 1 hγ (emission) Dissociation 	the concentration of lements that can be r and flow meter for nd output recorder. A termined is inserted ed as fuel and air or give a temperature of the fuel, oxidant, the ample containing the diation from resulting ugh an optical filter, the element under tocell represents the Thermal excitation M (gas) + Gas
6	Proced	170	Flame photomotor uses fl	M ⁺ (g) Flame emission,	h•
0	riocedi	ine f i s t t t t t t t t t	mproperly! Switch the instrument on a Note: Check the flame dur the gas valve immediately Transfer 5,10,15,20 and 2 prepared by weighing accu dissolving the crystals an water and mixing. The solu- lasks and dilute up to the the suction capillary of the read zero. Place each of t the instrument to read 5,1 petween each reading). Di and place the solution in	animable gases which can ca use ind off under supervision! ing work if it goes out, close With Eppendorf flame photomet 5 cm ³ of standard sodium chlori- irately 2.542g NaCl into a 1 liter d diluting the solution upto the ution gives 1ppm /ml) into 100m e mark with distilled water. Place instrument and set the instrumen he standard solutions in the suct 0,15,20 and 25 respectively (rins- lute the given test solution upto the the suction capillary and record	er: de solution (which is volumetric flask and e mark with distilled l standard volumetric the distilled water in at to tion capillary and set e with distilled water the mark, shake well the reading. Draw a

A STREET OF		SKIT		Rev No	.: 1.0			
1		Doc Code:	BS-SKIT.Ph	5b1.F03			Date: 23	3-01-2020
K		Title:	Engineerin	g Chemistry L	.ab		Page: 2	0 / 36
Copyri	Ent ©2017. cA	Title: AS. All rights reserved	Engineering Chemistry Lab Page: 20 / 36 calibration curve by plotting the reading (y-axis) and volume of NaCl solution (x- xis). From the calibration curve, find out the volume of the given test solution and from which calculate the amount of Na (58.5 g of NaCl contains 23 g of Na). Determination of Potassium: Prepare standard solution of potassium and follow he same procedure given above for sodium. Let the instrument warm up for 5-10 minutes. Feed distilled water to the instrument. Select the element Na by turning the selector "Elementwahl". Turn the outer knob "Messbereich" into position "10 0". Pull the "Kompensaton I" knob slightly out and adjust readout to 0. Press the "Kompensation II" if necessary. Aspirate the most concentrated standard solution (solution number 6) and adjust readout to approximately 350 (on uppermost scale) using inner "Messbereich" knob. Aspirate distilled water – the instrument should read 0. Aspirate standard solutions no. 1, 2, 3, test solution, and then standards 4, 5, 6. Record the results. Repeat 3-7 for solutions ofpotassium. Aspirate distilled water for at least 5 minutes to clean the system.					
7	Model	Diagram	- Director	Flame	Fuel gas	Photodetecto	Am	plifier ind zadout
8	Observa Look-up Output	tion Table, Table,	Volume of sodium chloride solution (cm ³)	Concentrati on of Na = 500 x vol 50 (ppm)	Emission Intensity	Volume of potassium chloride solution (cm ³)	Concentr ation of K = 500 x vol 50 (ppm)	Emission Intensity

4		SKIT	Teaching Process Rev No.: 1.0						
	ES)	Doc Code:	BS-SKIT.Ph	5b1.F03				Date: 2	8-01-2020
Copyrig	aht ©2017 cA	I Itle:	Engineerin	Page: 2	1/36				
		<u>, , , , , , , , , , , , , , , , , , , </u>	2.0	20			2.0	20	
			4.0	40			4.0	40	
			6.0	60			6.0	60	
			8.0	80			8.0	80	
			10.0	100			10.0	100	
			Test				Test solution		
			solution						
9	Sample	1	DETERMINA	TION OF SOE	DIUM:				
	Calculat	tions	Weight of So 1ml of NaCl 58.5 g of Nat	dium per ml o solution cont Cl contains 23	of the solutic tains 0.0025 g of Na 23	on 42	= 1 mg 2g of NaCl		
			0.002542 g c	of NaCl contain	23 ns =× 58.5	0.	.002542		
			Therefore 1r 1ml of NaCl Therefore Xr X ×0.0025 = Therefore th solution the equivale NaCl. Therefore, Y DETERMINA Weight of po 1ml of Kcl so 74.5 g of KCl Therefore, X Therefore, X	nl of NaCl solu solution cont nl of NaCl solu 42g of NaCl = 	= 1 mg ution contair tains 0.0025 ution contair ×0.0025 of NaCl (Y) Na present in be calculat Na and mol ontains g= r FASSIUM: nl of the solu ns (0.001909 g of K 001909 =1 mg ution contair ins 0.001907 ution contair = f K present	ns 42 ns 42 ns 42 ns 42 ns 92 ns 92 ns 93 ns 93 ns 93 ns	1 mg of Na 2g of NaCl = 2g of NaCl above test d by knowing cular weight of g on = 1 mg of KCl 1 mg of K g of KCl = X × 0.001909g of g of KCl(Y) above test soluti	f KCl f KCl on (X ml) c	an be
			Therefore, Y	y knowing the	e equivalent ains =		veight of K and mo 39 Y = g	olecular wei	ght of KCl
			,				74.5		
40			<u> </u>				=mg		
10	Graphs		Calibratio	n curve					

	and the second s	SKIT		Teaching Process Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1	1.F03 Date: 28-01-2020
6	A REAL PROPERTY AND A	Title:	Engineering C	hemistry Lab Page: 22 / 36
Copyrig	ght ©2017. cA	AS. All rights reserved		
			Emission Intensity	Emission Intensity Conc. of Na (ppm)
11	Results	& Analysis	Result: The wei	ight of Na ⁺ present in the given test solution = mg
			The w	reight of K+ present in the given test solution= mg
12	Applica	tion Areas	This method is a medical electro	used in determining in ion concentration in BIOLOGICAL FLUIDS in onics engineering.
13	Remark	s		
14	Faculty with Dat	Signature e		

<u>PART - B</u>

Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard Na2EDTA solution.

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Deter	mination of T	Fotal hardnes	s of Hard Wa	ter sample.		
2	Course Outcomes	Estim	ation of tota	l hardness of	given sample	e of hard wat	er sample usi	ng
		comp	lexometric t	itration.				
3	Aim	Deter	mination of ⁻	Total hardnes	s of Hard Wa	ter sample l	by using Stand	dard
		Na2E	DTA solutior	1 .		-		
4	Material /	' 1.	Volumetri	c flask				
	Equipment	2.	Burette					
	Required	3.	Pipette					
		4.	Conical fla	ısk				
		5.	Fannel					
		Reag	ents					
		1	Na2EDTA S	Solution				
		2	Ammonia	solutions				
		3	Hard wate	er Solution				
		4	NH4-NH4	Cl Buffersol	ution			
		5	EBT Indica	ator				
5	Principle	Hardr	ness of wate	r is mainly d	ue to the pr	esence of o	calcium and	magnesium
		salts	in it. Total h	ardness is th	e sum of ten	nporary hard	ness (due to	bicarbonates
		of cal	cium and Ma	ignesium) and	d permanent	hardness (du	ue to chloride	es, sulphates
		etc., d	of Calcium a	nd Magnesiu	ım). Ethylene	e diamine tet	tra acetic aci	d
		(EDT/	A) is a reager	nt, which read	ts with meta	al ions like Ca	a²+&Mg²+ form	ing complex
		comp	ounds. There	efore this rea	gent can be	used to dete	ermine the co	ncentration

6		SKIT		I eaching Process Re								ev No.: 1.0		
		Doc Code	BS-SKI	F.Ph5b1	.F03		_				Da	te: 28-01-2020		
		Title:	Engine	ering Cl	nemi	stry La	ab				Pa	ge: 23 / 36		
Copyrig	sht ©2017. cA.	AS. All rights reserve	of hardn		sing	substa	nces							
				>		Jubbiu	CHC		žC			(F-COD4		
						·								
				N Hat	-	œ <u></u> ±−	N			HC	Œ	-N		
							(HC	0D-1				CHCCDH		
			HOOD				-2-	NOO						
			The	EDIA complet	ion c	of the	roacti	on (and paint	of th	a titrat	Na ₂ EL	DIA salt		
			Friochro	ne blac	.1011 C	indicat	tor Th	uis is an organ	ic dve		in col	our It also forms		
			relativel	/ less sta	able	comple	exes w	ith bivalent n	netal i	ion of (Ca &M	g etc., which are		
			wine rec	in colo	our. 1	Therefo	ore ac	dition of the	indica	ator to	hard	water produces		
			wine-rec	l Colou	r. Wł	nen El	DTA is	added to h	ard w	/ater, i	t fir s t	reacts with free		
			metal ioi	ns and t	hen	attack	s the i	metal-indicate	or con	nplex .	The la	tter reaction can		
			be repres	sented a	IS 		-DT 4				(00)			
			M ⁻ Indicato	tor col r (Blue)	mple	t the	ond n	oint a change	from	ipiex n wine	(CUL)	o blue colour is		
			Observe	d. Since	the	reaction	on inv	olves the libe	ration	of H ⁺	ions a	and the indicator		
			is sensiti	ve to th	ne co	ncent	ration	of H ⁺ lons (pl	H) of t	the sol	lution	a constant Ph of		
			around 1	0 has to	be ı	mainta	ined.	For this purpo	se an	nmonia	a-amm	nonium chloride		
			buffer is	used.										
6	Procedu	ire	Part-A: F	repara	tion (of stan	ndard	EDTA solution	ר 					
			۱ محدینتعدہ	Veigh t	he v	veighir	ng bo	ttle containi	ng di	sodium	1 salt	of Na ₂ EDIA		
			flask We	iy anu i Aigh the	hott	tle aga	in Th	e difference l	iet pia	en the	n a zo stwo v	weights will give		
			the amo	unt of N		DTA tra	ansferi	red. Pour Sma	all qua	antities	of wa	ater over the salt		
			on the fu	the funnel and transfer the salt in to the Flask. Wash the funnel with the same										
			water 3-	er 3-4 times; Dissolve the salt by adding 5ml 1:1 Ammonia and make up the										
			solution	to the m	ark a	and sha	ake we	ell for uniform						
				ation Estimat	ion c	of hard	Inocc	of water						
			Fart-D.	pipette (out 2	5 cm^3	of the	given sample	of ha	rd wat	er in t	o a clean conical		
			flask .Ac	d 5 ml o	of NH	l₃-NH₄(Cl buff	fer followed b	oy 3-4	drops	of Erio	ochrome black T		
			indicator	.Titrate	this	agains	st Na₂l	EDTA taken in	a bu	rette ti	ill the	colour changes		
			from wi	ne red	to p	ure bl	ue .N	ote down the	e bure	ette re	eading	and repeat the		
-	D I I	<u> </u>	titration t	o get co	onco	rdant v	alues	•						
/	Block, Model	Circuit	,											
	Reaction	n Fouation						NII						
	Expecte	ed Graph												
8	Observa	tion Table										Indicator and		
	Look-up	Table	FDTA	in	Tria	11		Trial 2	Tri	al 3		colour change		
	Output		burette							ut 5		cotour change		
			Final	huratta					-					
			reading	Juielle										
			Initial h	urette										
			Reading											
												LBI indicator		
			Volume	of								clear blue		
			EDTA	. 01										
			run dov	vn in										
			cm ³											
9	Sample					CALC								
	Calculat	ions	ORZERA		AND (
			Part-A:	reparat	tion (ot Na ₂ E		solution						
			Weight	of the w	eighi	ing bot	ttle +N	$Na_2EDTA = W_1 =$				g		

	Summer to a	SKIT	1	eachin	ng Process	;		Rev No.: 1.0
1		Doc Code:	BS-SKIT.Ph5b1.F03		5			Date: 28-01-2020
6		Title:	Engineering Chemistr	y Lab				Page: 24 / 36
Copyrig	ght ©2017. cA	AS. All rights reserve	d. Waight of th	o woidh	ing bottlo	_ \\/ _		~
			weight of th	e weign	ing bottle	$=$ $\mathbf{V}\mathbf{V}_2 =$		9
			Weight of the Na ₂ EDTA	salt tra	nsferred =	(W1-W2)=	-	g
			Molarity of EDTA s	olution	= Weigh	t of Na 2	EDT (W_1	$-W_2)X4 =$
			PART-B : Estimation	n of har	Gram dness	molecula	ar wt. of Na =.	a ₂ EDTA 372. M (<i>a</i>)
			EDTA in burette	Trial I	Trial 2	Trial 3	Indicator	and colour change
			Final burette reading					
			Initial burette Reading				EBT indica	ator o clear blue
			Volume of EDTA				which red t	
			run down in cm ³					
			Volume of Na₂EDTA use 1000cm³of 1M EDTA	ed: <i>b</i> cm = 1	າ ³ 00 g of Ca	CO ₃		
			Therefore <i>b</i> cm ³ of <i>a</i> mo	lar EDT/	$\frac{bXa}{100}$	$\frac{X100}{0} =$	(c) g	of CaCO ₃
							(0) 5	
			Therefore 10 ⁶ cm ³ 0f ha	rd wate	= (C) g er contains	g of CaCO3		
					c X 10 ⁶			
				=	25	=	ppm	
			Total hardness of Water	· .	= ppr	n of CaCO	3	
10	Outputs	5	Total hardness of Water	=	• ppm	n of CaCO ₃		
11	Results	& Analysis	REPORT: Total hardness	of wate	er =	ppm of Ca	CO3	
12	Applica	tion Areas	 Complexomtric hardness of wat 	titratio ter	on is an ef	ficient m	ethod for d	etermining level of
13	Remark	S						
14	Faculty with Dat	Signature te						

Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION.

		2	11 a		- 4 -	D. C.	
-	Experiment No.:	Z	marks		ate	Date	
				Pla	nned	Conducted	
1	Title	DET	ERMINATIO	N OF CALCIUM O	XIDE IN CEMENT	SOLUTION	
2	Course Outcomes	Calc	ulate % of Ca	o in a given ceme	nt sample using raj	oid EDTA meth	iod.
3	Aim	DET	ERMINATIO	N OF CALCIUM O	XIDE IN CEMENT	SOLUTION BY	(USING
		STA	NDARD Na2	EDTA SOLUTION			
4	Material /	App	aratus				
	Equipment	6	Volumetr	ic flask			
	Required	7	Burette				
		8	. Pipette				
		9	Conical fl	ask			
		1	0. Fannel				
		Rea	gents				
			1. Concentra	ted Hcl			

4	and the second s	SKIT		Teaching	Process		Rev No.: 1.0				
		Doc Code:	BS-SKIT.Ph5b1.	F03			Date: 28-01-2020				
Converie		Title:	Engineering Ch	emistry Lab			Page: 25 / 36				
Copyrig	nt ©2017. CA	AS. All rights reserved	2. Na2EDTA	Solution							
			4. Glycerol	Solution							
			5. Diethyl a	mine Solution							
			6. 4N NaOH	Solution							
	Drein einel		7. Patton ar	nd Reeder's indi	cator	Ciliantes of an					
5	Principl	e	aluminum and in composition of P	on with a small ortland cement	quantity of oxi is as follows	des of alkali n	netals The average				
			Ca(Mg SO	CO₃ -63.80%; Si(O - 3.75%; TiO₂ - ³⁻ - 1.75%	D₂ - 20.7%; Al₂O₃ 0.23% ; Na₂O - 0	- 5.6% ; Fe₂O₃).21%; K₂O - 0.5	- 2.5% ; 1 %;				
			Use of Eriochron Mg ²⁺ ions, While Calcium ions in has to be mainta purpose.	Use of Eriochrome black-I as indicator gives the total concentration of Ca^{2+} and Ag^{2+} ions, While Patton & Reeder's indicator would allow estimation of onl Calcium ions in the presence of Magnesium ions. For this purpose P^{H} of 12-1 has to be maintained. Additions of Diethylamine & Sodium hydroxide serve the purpose.							
6	Procedu	ıre	art A: Preparation of solution of Disodium salt of Na2EDTA								
			Weigh the given o a 250 cm³ volu Make it up to the	disodium salt of metric flask. D e mark and shal	Na₂EDTA and tra issolve by addi ke well to get u	ansfer on to th ng small amo niform concen	e funnel placed on ount of DM water. tration.				
			Part B: Estimatic Pipette out 25 cr 5 cm ³ of diethyl a adding 10 cm ³ Reeder's indicat burette until the reading and repe	Pipette out 25 cm ³ of given cement solution into a clean conical flask using. Add 5 cm ³ of diethyl amine and 5 cm ³ of 1:1 glycerol. Adjust the pH of the solution by adding 10 cm ³ of 4N sodium hydroxide solution. Add a pinch of Patton & Reeder's indicator. Titrate the solution against EDTA solution taken in the burette until the colour changes from wine red to blue. Note down the burette reading and repeat the titration to get concordant values.							
7	Block, Model Reactio Expecte	Circuit, Diagram n Equation, d Graph	7		NIL						
8	Observa Look-up Output	tion Table, D Table,	EDTA in burette	Trial I	Trial 2	Trial 3	Indicator and colour change				
			Final burette reading								
			Initial burette reading				Patton and Reeder's indicator				
			Volume of EDTA run down in cm ³				Wine red to clear blue				
9	Sample Calculat	cions	OBSERVATION PART A: Prepara	AND CALCULA	TION: n of Disodium sa	It of Na2EDTA					
			Weight of the weighing bottles No. EDTA-								
			Woight of the	ojabina battla	_	~ ~					
			weight of the W		=	y					
			Weight of the Na	a2EDTAsalt trans	sterred=	g					

	Second in a	SKIT		Teachin	g Process		Rev No.: 1.0
1	pyright ©2017. c/	Doc Code:	BS-SKIT.Ph5b	1.F03	0		Date: 28-01-2020
6		Title:	Engineering C	hemistry Lab			Page: 26 / 36
Copyris	ght ©2017. cA	AS. All rights reserved	Molarity of Na ₂ E Weight of N	EDTA solution = Na2EDTA sal	t X4	X 4 Gram	
			molecular v	veight of Na ₂ E	EDTA	372.24	
						=	M (<i>a</i>)
			Part B: Estimat	ion of CaO			
			EDTA ir burette	Trial I	Trial 2	Trial 3	Indicator and colour change
			Final burette reading				.
			Initial burette reading				Patton and Reeder's indicator
			Volume of EDTA run down in cm ³	r			Wine red to clear blue
			Weight of ce Volume of EE 1000 cm ³ of 1 b cm ³ of a M	ment sample in DTA required to IM EDTA = 56.0 EDTA = $\frac{56.0}{1000}$	$n 25 \text{ cm}^3 = 0$ react with 25 $08 \text{ g CaO} (\text{M})$ $\frac{8 \times a \times b}{9 \times 1}$. 09 = W g .0 cm ³ of the cemer Aolecular mass of 0 g of CaO	nt solution =' CaO = 56.08)
				=	•••••		
				=		'c 'g of CaO	
			$25.0 \text{ cm}^3 \text{ of}$	cement solution	n contains 'c	'g of CaO	
			Percentage of	f CaO in the cer	nent sample	$=\frac{\mathbf{c} \times 100}{W} = \dots$	
					=		
10	Outputs	5	Percentage of C	aO in the ceme	nt sample =	•••••	
11	Results	& Analysis	REPORT: Perce	ntage of CaO in	the cement s	ample =	
12	Applica	tion Areas	This technique	is applicable to	determine th	ne quality of cemen	it in civil
			engineering.				
13	Remark	S					
14	Faculty with Da	Signature te					

Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS

-	Experiment No.:	3	Marks	Date	Da	te

1		SKIT		Teaching	Process		Rev No.: 1.0
1		Doc Code:	BS-SKIT.Ph5b1	.F03			Date: 28-01-2020
No.	AL REAL OF A	Title:	Engineering Cl	nemistry Lab			Page: 27 / 36
Copyrig	<u>sht ©2017. cA</u>	AS. All rights reserve	d.		Planned	Cond	ucted
1	Titla						
2	Course	Outcomes	Estimation of pe		ner in a given all	ov by jodome	tric method
3	∆im	oucomes		N OF PERCENT			
			STANDARD Na2	S2O3 solution.			DI OSING
4	Materia	l /					
	Equipm	ent	1. Volumetr	ric flask			
	Require	ed	2. Burette				
			3. Pipette				
			4. conical fl	ask			
			5. Fannel				
			-				
			Reagents				
			1 Concentr	ated alacial ace	icacid		
) Standard	sodium thiosulo	hate solution (0)	025N)	
			3. Potassiur	n iodide		0251()	
			4 NH4OH S	Solution			
			5. Starch in	dicator			
			6. Brass sol	ution			
	Durin ain		The chief exacti	turnets of broos		and the lt	alaa aantaina amall
C	Princip	le	The chief constr	lead and iron.	the percentage	and zinc. It	of typical brass is
			conner 50.90	10° 10 10°	6 Lead 0.2 Iro	n [.] 01	of typical blass is
			A solution of br	ass is made by	dissolution of t	he sample in	nitric acid. Boiling
			with urea destro	ys oxides of niti	ogen. Adding a	, mmonia neut	ralizes excess acid.
			The solution is	changed to	weak acidic m	edium by a	dding acetic acid.
			Potassium iodid	e is added loo	line is liberated	by the cup	ric ions. Then the
			solution is tittere	d against sodiur	n thiosulphate s	solution using	starch as indicator.
			The amount of s	soaium thiosulph	ate consumed is	s the measure	e of the amount of
			copper present				
6	Proced	ure	PART A: Prepara	ation of Brass so	lution:		
			M/		- f h		3 and and floods Add
			weign exactly th	ne given sample	of brass into a d	clean 250 cm	d about 1 g of uroa
			Boil for about 2 r	aciu anu doil. Au	nyides nitrogen	Cool the mixt	u about i g oi ulea.
				initiates destroy	oxides introgen.		
			PART -B: estima	ation of copper	in brass solutio	on.	
			Add 1 test tube	of Dominaralica	d water to the	colution obtain	ined in part A Add
			Add i lest lube	or Demineralise	drop until a pa	solution obta	ripitate is obtained
			Dissolve the pre	cipitate by add	ling 5cm3 of a	cetic acid an	d 10cm ³ of 20% Kl
			solution.Titrate t	he librated iodin	e against standa	ard sodium th	iosulphate solution
			taken in the bure	ette until the sol	ution becomes I	PALE YELLOV	V. Add about 2 cm ³
			of freshly prepa	red starch soluti	on as indicator.	Continue the	titration by adding
			sodium thiosulph	ate solutionStri	ctly drop by dro	op until the d	ark blue coloration
			disappears, leav	ing behind whit	e ppt. Repeat P	ART A and P	art B to conduct a
7			ouplicate. Calcul	ate the percenta	ige of copper pr	esent in brass	sample.
/	Reactio	n Fauation	2Cu²+ ⊥ A	KI Cuala -	- ΔΚ⁺ + Ι ₂		
	i cactio	יי בקטמנוטוו	2Na ₂ S ₂ O ₃	+ 2 Cu212 •	+ Na₂S₄O₄		
8	Observa	tion Table.	D			C	
	Look-ur	o Table,	Burette	sample- I	Sample-II	Sample-III	Indicator and
	Output	- ,	reauings				colour change

4		SKIT			Teachir	ng	Process				Rev No.: 1.0	
		Doc Code:	BS-SKIT.Ph5b1	.F03							Date: 28-01-2	.020
	ALTERN DE	Title:	Engineering Ch	emis	try Lab						Page: 28 / 36	
Copyrig	ght ©2017. cA	AS. All rights reserve	d.								C	
			Final								Starch	
			Initial								Disappeara	anc
			Volume of								e of t	olue
			Sod.								colour	
			Thiosulphate									
			run down (in									
			(cm ³)									
9	Sample		OBSERVATION .	AND	CALCUL	AT.	ION:					
	Calculat	tions	SAMPLES			Sa	mple-1	Sa	mple-2		Sample-3	
			Weight of	the	brass					g		g
			transferred				g					
			PART -B: Estima	ation	of copp	er	in brass sol	utic	on.			
			Burette readin	gs	Sample	- 1	Sample-II	Sa	mple-III	Ind	icator and colo	our
										cha	inge	
			Final							Sta	rch solution.	
			Initial							Disa	appearance e colour	OT
			Volume of	Sod.						biu		
			Thiosulphate	run								
			down (in cm ³)									
			Normality of Sod	ium.	Thiosulph	nat	e = (<i>a</i>)	N				
			Volume of the So	od. Th	iosulpha	te	=(<i>b</i>) c	m ³				
			1000 cm ³ of sod.	thios	ulphate		= 63.54g of 0	сор	per			
							<u>63</u>	.54	<u>X bX a</u>	<u> </u>	3.54 X X	
			b cm ³ of a noi	rmal s	od.thios	ulp	hate = 100	00		10	00	
			g of copper									
						=	(c) g	of c	opper			
			Weight of the bra	iss ta	ken =		(w) g					
			(w) g of brass co	ontair	ns (c) g o	t c	opper cv100)	X 10	0		
							<u>CA100</u>	<u>'</u> =	A 10	=		••••
			Therefore, 100g	of br	ass conta	ains	S = W					
			g of copper									
			. .									
			(Note : Simila	rly do	o the cal	cul	ation for II	and	III trial)		
10	Outnut	5	Percentage of co	pper	in brass s	sam	nole =					
	D	<u>.</u>		~~~					-			
11	Kesults	tion Areas	Percentage of co	pper	in brass s	san	nple =		Emetals i	<u></u>	allovs	
13	Remark	S S S S S S S S S S S S S S S S S S S		seu (o detenn	iiie	- compositio	U	incidis I	i all	alloys.	
14	Faculty	Signature	<u> </u>									
	with Da	te										

Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION

-	Experiment No.:	4	Marks	Date Planned		Date Conducted	
1	Title	DET	ERMINATION	OF PERCENTAGE OF IR	ON IN HAEM	ATITE ORE	L

		and the second s	SKIT	Teaching Process	Rev No.: 1.0						
			Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020						
6	X		Title:	Engineering Chemistry Lab	Page: 29 / 36						
	2	Course	Outcomes	Calculate % of Fe in a given ore solution using external indica	ator method.						
	3	Aim		DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE BY USING STANDARD K2Cr2O7 SOLUTION.	ORE SOLUTION						
4	4	Materia	l /	Apparatus							
		Equipm	ent	11. Volumetric flask							
		Require	d	12. Burette							
				14. Conical flask							
				15. Funnel							
				Reagents							
				1. Concentrated HCl							
				2. Haematite ore solution							
				3. SnCl2 Solution							
				5. Potassium dichromate							
				6 [K2(Fe(CN)_2](external)							
I	5	Principl	e	Haematite is an important ore of iron containing mainly Fe_2Q	and silica						
	-	rinciple		Estimation of involves the dissolution of the ore in Hydrochlor	ic acid, reducing						
				the Ferric (Fe ³⁺) ions in the solution to Ferrous (Fe ²⁺⁾ ions using	a reducing agent						
				ine stannous chloride and the estimation of ferrous ions so obtained by titrating against an Oxidizing agent like Potassium dichromate							
6	5	Procedure		Part A - Preparation of Potassium Dichromate solution:							
				Weigh accurately the given potassium dichromate crystals	and transfer on to						
				the funnel placed on a 250 cm ³ volumetric flask. Dissolv	e by adding small						
				concentration.							
				concentration.							
				Part B Estimation of Iron:							
				Add 5 cm ³ of concentrated Hydrochloric acid. Heat the	solution nearly to						
				boiling. Add Stannous chloride drop by drop to the HOT	solution until the						
				solution becomes Colureless. Add 2-3 drops of stannous	chloride in excess.						
				Cool the solution to room temperature. Add 2 test tube of DA 5. cm ³ of Moreuric Chlorido at a strosh. A silky White procina	A water followed by						
				the contents of the flask and repeat The experiment if	NO PRECIPATE or						
				GREYISH ppt is formed. Titrate the solution against s	tandard potassium						
				dichromate solution taken in the burette using potassium	ferricyanide as an						
				EXTERNAL INDICATOR. In the beginning take out a drop of the indic	he reaction mixture						
				paraffin paper. The colour of the drop of indicator changes	to blue. Take out a						
				drop of the reaction mixture after every addition of $K_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr$	D_7 and mix it with a						
				fresh drop of the indicator, appearance of blue or green co	olour indicates that						
				the END point is not reached. At the end point a drop of the fails to give either blue or green coloration. Note down the b	ne reaction mixture						
				repeat the experiment for agreeing values.							
	7	Reactio	n Equation	$2FeCl_3$ + $SnCl_2 \rightarrow 2FeCl_2$ + $SnCl_4$							
				Yellow Colorless							
				$SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$							
				Silky white							
				$K_2Cr_2O_7 + 8 \text{ HCl } \rightarrow 2\text{KCl} + 2 \text{ CrCl}_3 + 4\text{H}_2\text{O}$	+ 3[0]						
				$\frac{(2\text{FeCl}_2 + 2 \text{ HCl} + [0] \rightarrow 2 \text{ FeCl}_3 + \text{H}_2\text{O})}{(2 \text{FeCl}_2 + 2 \text{ HCl} + (1 \text{ H}_2) + (1 \text{ H}_2) + (1 \text{ H}_2))}$	<u>X 3</u>						
				$K_2Cr_2O_7 + 14 HCl + 6FeCl_2 \rightarrow 2KCl + 6FeCl_3 \rightarrow 2KCl +$	F ZCrCl₃ + 7 H₂O Green						
L					0.001						

SKIT			Teaching Process Rev No.: 1.0						.0
Doc Code:		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020					
Title:		Title:	Engineering Chemistry	Lab			Pa	Page: 30 / 36	
Copyri	ght ©2017. cA	AS. All rights reserved	j.	[1	1	1		
8	8 Observation Table, Look-up Table, Output		Burette readings	Trail I	Trail II	Trail III	Indicator change	and	colour
			Final burette reading					1/	
			Initial burette reading				IN3(Fe(CN		ernal)
			Volume of K2Cr2O7 run down (in cm3)				Blue to no colour of i	change ndicate	e in the or.
9	Sample		PART A: Preparation of p	ootassium	dichrom	ate soluti	ion		
	Calculat	tions	Weight of the weighing b	ottle + K ₂	Cr ₂ O ₇ =		g		
			Weight of the weighing b	ottle	=		g		
			Weight of the K ₂ Cr ₂ O ₇ salt	t transferr	ed =		g		
							5		
			Normality of K $Cr_{2}O_{2}$	solution	$h = \frac{Wt. c}{Gram}$	of K_2 Cr n Eq. wt	$O_2 O_7 X 4$. of $K_2 Cr_2$	$\frac{1}{2^{O_7}} =$	X 49.06
			Rurotto roadings	Traill	Trail II	Trail III	Indicator	and	colour
			bulette l'eauligs	TTAILT	I I all li		change	anu	Coloui
			Final burette reading						
			Initial burette reading				[K ₃ (Fe(CN)6](exte	ernal)
			Volume of K2Cr2O7				Blue to no	change	e in the
			run down (in cm ³)				colour of indicator.		
			Volume of $K_2Cr_2O_7$ consumed: (b) cm ³ Weight of haematite ore dissolved in 250 cm ³ of the solution = 1.025 g 1000 cm ³ of $1NK_2Cr_2O_7$ = 1 equivalent of iron = 55.85 g of Iron						
			Therefore (b) 55.85 X b X a _ 55	cm³ 5 . 85 <i>X</i>	of X	(a) r	normal	K ₂ Cr ₂ (O ₇ =
			1000 = 1	000					
						<pre>/ .</pre>			
			25 cm^3 of bacmatite ero	colution c	····· =	(c) g of ir	on		
			250 cm ³ of haematite ore	solution c	contains (0 X (c) =		(d) s	g of iron
						dx	100	X	100
			Therefore 100g of hear	natito ora	contain	1.	025 =	1.02	25 _
						, –			=
Percentage of iron in given haematite ore sample =									
10	Outputs	G. Aralista	Percentage of iron in give	en sample	of hemat	ite =	tito	••••••	
17	Applice	α Analysis	This method is used to de		ompositie	n of mot	ule.	, in	
12	Арриса	CIOIL ALGS	metallurgical process	cennine C	ompositio	in or meta		: 111	
13	Remark	S							
14	Faculty	Signature							
	with Da	te							

A STATE OF THE STA	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
Constant of the second se	Title:	Engineering Chemistry Lab	Page: 31 / 36

Copyright ©2017. cAAS. All rights reserved.

Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER

-	Experiment No.:	5	Marks		Date		Date		
	·				Planned		Conducted		
1	Title	DETE	RMINATION	OF CHEMICA	AL OXYGEN	DEMAND (CC	D) OF WATE	R	
2	Course Outcomes	Estim	timation of total oxidizable impurities present in sewage water through redox						
~	A •	titrati	on.						
3	AIM	DETE			AL OXYGEN I	DEMAND (CC	D) OF INDU	STRIAL	
4	Matorial /		I WAIER SA	MPLE BY US	SING STAND	ARD FAS SU	LUTION.		
4	Malerial /	16	Volumetri	c flask					
	Required	10	Burette	C Hask					
	nequired	18	Pipette						
		19	Conical fla	isk					
		20	. Fanal						
		Reag	ents						
		I.	Concentra	ted H2SO4					
			. Ferrous ar	nmonium sul	phate (FAS)				
			II. Potassium	dichromate					
		ľ	V. Ferroin inc	licator					
		٧	. Wast wate	er sample					
5	Principle	COD	is a measure	of oxygen e	quivalent of	that portion	n of oxidisab	le materials	
		that o	can be oxidiz	ed by a stron	ng oxidizing a	agent. Chemi	cal oxygen d	emand is an	
		impo	rtant parame	eter in indust	rial wastewa	ter treatmen	it. Straight ch	nain aliphatic	
		comp	ounds, arom	natic hydroca	rbons, straig	ght chain alc	ohol, acids,	pyridine and	
		other	oxdisable m	naterial are p	present as in	npurities in w	astewater. S	traight chain	
		comp	ounds, aceti	c acid etc. ai	re oxidisabe	more effecti	vely when sil	ver sulphate	
		is ac	ded as ca	italyst. Addit	tion of me	rcuric sulph	ate would	help avoid	
6	Drocoduro	Dort	A Proparatio	ionde ions.	d forrous ar	monium	phata (EAS)	colution	
0	FIUCEUUIE	Woid	n- riepaiatio	the given FAC	and transfer	it into a 250	cm ³ standard	flask using	
		a fun	reign accurately the given ras and transfer it lines a 200 cm ² standard flask using a funnel Add 30 cm ³ of dilute sulphuric acid followed by about 100 cm ³ of water						
		Disso	i tunnel. Add 30cm ² of dilute sulphuric acid followed by about 100 cm ² of water.						
		conc	entration					0.111	
		Part-	B: Blank titra	ation:					
	1			-					

SKIT Doc Code:		SKIT		ev No.: 1.0					
		Doc Code:	BS-SKIT.Ph5b1	BS-SKIT.Ph5b1.F03					
Canadria		Title:	Engineering Ch	nemistry Lab		Pa	age: 32 / 36		
	<u>nt ©2017. ca</u>	<u>AS. All rights reserve</u>	^a Pipette out 25cr Add 10 cm ³ of 1: and 3 drops fer colour changes repeat the titratic Part-C: Back titr Pipette out 25 cr of standard pota sulphuric acid co flask constantly temperature. Ad taken in the bure Note down the b	m ³ of potassiun 1 sulphuric acid roin indicator. Ti from blue green on to get concor ration: m ³ of given samp assium dichrom ontaining mercur . Reflux the co d 3-4 drops fe ette until the col ourette reading a	n dichromate in containing merc trate against FA to reddish brow dant values. le of wastewate ate solution usin ric sulphate and ontent of flask rroin indicator a our changes from and repeat the tit	to a conical fla suric sulphate and AS taken in the vn. Note the bu r into a conical ng a pipette. Ac silver sulphate for 30 minute and Titrate aga m bluish green ration to get co	sk-using pipette. nd silver sulphate burette until the rette reading and flask. Add 25 cm ³ dd 10 cm3 of 1:1 while shaking the s. Cool to room inst FAS solution to reddish brown. ncordant values.		
7	Reactio	n Equation							
8	Observa Look-up Output	tion Table, Table,	Burette readings	Trail I	Trail II	Trail III	Indicator and colour change		
	output		Final burette reading Initial burette reading Volume of FAS run down (in cm ³)				Ferroin indicator Blue green to Reddish brown		
0	Camala								
	Calculat	tions	PART A: Preparation of Ferrous ammonium sulphate (FAS) solution:Weight of the weighing bottle + FAS=gWeight of the weighing bottle=g						
			Weight of the FAS salt transferred = g						
			Normality <u>Wt.of FAS X</u> Gram eq. wt Volume of FAS co Part-B: Back titr	of $\frac{K4}{K4} = \frac{1}{392}$ on sumed in the tration:	FAS <u>X 4</u> = plank titration =	solutio N(a) (b) cm ³	on =		
			Burette readings	Trail I	Trail II	Trail III	Indicator and colour change		
			Final burette reading				Ferroin indicator		
			Initial burette reading				Blue green to Reddish		
			Volume of FAS run down (in cm ³)				brown		
			Back titrate valve Amount of potas: sample =_ (b) 1000 cm ³ of 1N F	e = (c sium dichromate)-(c) cm ³ AS solution = 1 e) cm³ (in terms of FAS quivalent of oxy	5) that has react gen = 8 g of oxy	ed with water gen.		

	Statute In A	SKIT	Teaching Process	Rev No.: 1.0		
Doc Code:		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020		
6		Title:	Engineering Chemistry Lab	Page: 33 / 36		
Copyrig	ght ©2017. cA	AS. All rights reserve	d.			
			(b-c) X a X 8_			
			b - c cm³ of ' a ' N FAS solution = 1000 oxygen	1000 = (d) g of		
	25 cm ³ of wastewater requires (d) g of oxygen $\frac{d \times 1000}{d \times 1000}$					
			Therefore, 1000 cm ³ of waste water requires = 25	=g oxygen		
			COD of the given sample of water = mg/dm ³ of oxyg	en_		
10	Outputs	5	COD of the given sample of water = mg/dm³ of oxy	gen		
11	Results	& Analysis	REPORT: COD of the given sample of water =mg/e	dm ³ of oxygen		
12	Applica	tion Areas	This technique is used to maintain standard parameters	s in industrial waste		
			water in environmental engineering.			
13	Remark	S				
14	Faculty with Da	Signature te				

Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching powder

-	Experiment No.:	6	Marks		Date		Date		
					Planned		Conducted		
1	Title	Estim	Estimation of percentage of available chlorine in the given sample of bleaching						
		powe	ler						
2	Course Outcomes	Estin	nation of % c	of chlorine in	ı a given blea	aching powd	er sample by	lodometric	
		meth	iod.						
3	Aim	Estin	nation of per	centage of a	vailable chlo	rine in the g	iven sample (of bleaching	
		powo	der by using	Standard Na	2S2O3 Solutio	on.			
4	Material /	Арра	iratus						
	Equipment	Ι.	Mortar ar	nd pestle					
	Required	١١.	Volumetr	ic flask					
			Burette						
		IV	Pipette						
		۷.	Erlenmey	er flask.					
		Reag	gents						
			Concentra	atod glacial a	cotic acid				
			∥ Standard	sodium thios	ulphate soluti	ion (0.025N)			
			VIII Potassiur	n iodide	alphate solut	0.02514)			
			X Starch inc	licator					
				1000000000000000000000000000000000000	N)				
		'							
Б	Drinciplo	Plan	ching pourde	r is commor	hursed as a	dicipfoctant	The chloring	o procont in	
С	Principle	the b	leaching powde	wder gets re	duced with t	ime. So, to f	ind the exact	quantity of	

		SKIT		Rev No.: 1.0					
1		Doc Code:	BS-SKIT.Ph5b1.	F03		Date: 28-01-2020			
		Title:	Engineering Ch	emistry Lab		Page: 34 / 36			
Copyris	<u>ght ©2017. cA</u>	AS. All rights reserved	bleaching powde	r required, the amount of ava be	ailable chlorine found	in the sample must out.			
			Chlorine will liberate free iodine from potassium iodide solution when its pH is or less. The iodine liberated, which is equivalent to the amount of acti chlorine, is titrated with standard sodium thiosulphate solution using starch ndicator.						
6 Procedure			 Dissolve 1g bleaching powder in 1 litre of distilled water in a volumetric flask, and stopper the container. (This can be done by first making a paste of the bleaching powder with mortar and pestle.) Place 5 mL acetic acid in an Erlenmeyer flask and add about 1g potassium iodide crystals. Pour 25 mL of bleaching powder solution prepared above and mix with a stirring rod. Titrate with 0.025 N sodium thiosulphate solution until a pale yellow colour is obtained. (Deep yellow changes to pale yellow.) Add 1mL of starch solution and titrate until the blue colour disappears. Note down the volume of sodium thiosulphate solution added (V₁). Take a volume of distilled water corresponding to the sample used. Add 5 mL acetic acid, 1g potassium iodide and 1 mL starch solution. If blue colour occurs, titrate with 0.025 N sodium thiosulphate solution until a blue colour appears. Note down the volume of sodium thiosulphate solution added (A₁). If no blue colour occurs, titrate with 0.025 N iodine solution until a blue colour appears. Note down the volume of iodine (A₂). Then, titrate with 0.025 N sodium thiosulphate solution until a blue colour disappears. Record the volume of sodium thiosulphate solution till the blue colour disappears. Record the volume of sodium thiosulphate solution till the blue colour disappears. Record the volume of sodium thiosulphate as A₄(A₄=A₂- A₃). Note: Blank titration is necessary to take care of the oxidising or reducing reagents' impurities. 						
7	Reactio	n Equation	$A_4(A_4 = A_2 - A_3).$						
8	Observa Look-up Output	ition Table, D Table,	Bleaching powe	ler solution x Standard sodium	n thiosulphate s	olution (0.025 N)			
			Trail no.	Volume of bleaching	Burette readin	g Volume of tit			
				Powder solution(mL)	Initial Fina	rant(mL)			
			Distilled water	× Standard sodium thiosulphat	te solution (0.02	25 N)			
			Trail no.	Volume of bleaching	Burette readin	g Volume of tit			
				rowaer solution(ML)	Initial Fina				
				1					

SKIT			Rev No.: 1.0					
Doc Code:		BS-SKIT.Ph5b1.	D	Date: 28-01-2020				
6		Title:	Engineering Ch	emistry Lab		Pa	age: 35 / 36	
Copyri	ght ©2017. cA	AS. All rights reserved	1. 					
					00510			
			Distilled water	x Standard lodine solution (0.	025N)			
			Trail no.	Volume of bleaching	Burette re	eading	Volume of tit	
				Powder solution(mL)	Initial	Final	rant(mL)	
9	Sample Calculations $(V - A_1) \text{ or } (V + A_4) \times N \times 35.46$ mg of Cl ₂ /mL (B) =							
	mL of bleaching powder solution taken					n		
			1000 mL of bleaching powder solution contains 1000 x B mg of Cl_2					
	i.e., 1000 mg bleaching powder contains 1000 B mg of Cl ₂							
			therefore, 100 m	ig of 1000 X	В			
			bleaching powde	er contains =				
	10							
	% of chlorine available =							
10	Outputs	5	Available chlorir	ne in the given bleaching pow	der is.%			
11	Results	& Analysis	Available chlor	ine in the given bleaching pov	wder is%			
12	Applica	tion Areas	This technique i	s used to determine the quali	ity of bleac	hing po	owder sample.	
13	Remark	S						
14	Faculty	Signature						
	with Da	te						

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	BS-SKIT.Ph5b1.F03	Date: 28-01-2020
	A CONTRACTOR	Title:	Engineering Chemistry Lab	Page: 36 / 36

Copyright ©2017. cAAS. All rights reserved.